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Abstract  

Collagen fibers are the main load-bearing component of soft tissues but difficult to 

incorporate into models. Whilst simplified homogenization models suffice for some applications, 

a thorough mechanistic understanding requires accurate prediction of fiber behavior, including 

both detailed fiber-level strains and long-distance transmission. Our goal was to compare the 

performance of a continuum model of the optic nerve head (ONH) built using conventional 

techniques with a fiber model we recently introduced which explicitly incorporates the complex 

3D organization and interaction of collagen fiber bundles [1]. To ensure a fair comparison, we 
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constructed the  continuum model with identical geometrical, structural, and boundary 

specifications as for the fiber model. We found that: 1) although both models accurately matched 

the intraocular pressure (IOP)-induced globally averaged displacement responses observed in 

experiments, they diverged significantly in their ability to replicate specific 3D tissue-level strain 

patterns. Notably, the fiber model faithfully replicated the experimentally observed depth-

dependent variability of radial strain, the ring-like pattern of meridional strain, and the radial 

pattern of circumferential strain, whereas the continuum model failed to do so; 2) the continuum 

model disrupted the strain transmission along each fiber, a feature captured well by the fiber 

model.  

These results demonstrate limitations of the conventional continuum models that rely on 

homogenization and affine deformation assumptions, which render them incapable of capturing 

some complex tissue-level and fiber-level deformations. Our results show that the strengths of 

explicit fiber modeling help capture intricate ONH biomechanics. They potentially also help 

modeling other fibrous tissues. 

 

1.INTRODUCTION 

Glaucoma, a leading cause of irreversible blindness worldwide [2, 3], is a progressive 

optic neuropathy characterized by optic disc excavation and the loss of retinal ganglion cell 

axons that transmit visual information from the eye to the brain [4, 5]. Clinical and experimental 

evidence indicates that the initial site of injury in glaucoma is the ONH, in the posterior pole [6]. 

Elevated IOP is one of the main risk factors for glaucomatous neural tissue (NT) damage, and 

every current treatment is based on lowering IOP. The mechanisms by which IOP translates into 

NT damage remain unclear [7-9]. 

Understanding ONH sensitivity to IOP and thus individual susceptibility to glaucoma 

rests, in turn, in understanding how the tissues of the ONH region manage to bear biomechanical 

loads. Biomechanical support to the ONH region is provided by the collagenous connective 

tissues of the lamina cribrosa (LC) within the scleral canal, and the adjacent peripapillary sclera 

and the dura and pia maters [10]. The variability in individual susceptibility to IOP-related 

glaucomatous damage is thought to be due, at least in part, to differences in the mechanical 
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behavior of the ONH tissues between individuals [11].  The desire to understand the sensitivity to 

IOP and susceptibility to glaucoma spurred the development of computational models that can 

capture the mechanical behavior of the tissues and the complex anatomy of the region. Early 

models simplified the tissues as linear, isotropic and homogeneous [12-17] or 

phenomenologically nonlinear [18]. Since collagen fibers are the primary load-bearing 

component of the ONH tissues, there has been great interest in developing computational models 

that can capture accurately the mechanical behavior of fibrous tissues. ONH models have thus 

advanced to incorporate inhomogeneous, anisotropic and nonlinear characteristics in some cases 

with fiber information derived from experiments [19-25]. 

Recent progress in imaging technology, specifically polarized light microscopy (PLM) 

[26-30] and its high speed variations [31, 32], have enabled much improved visualization of the 

three-dimensional (3D) organization of collagen fiber bundles in the ONH [27, 28, 33]. Utilizing 

this detailed information, our research group has developed a direct fiber modeling framework 

that accounts for the complex 3D organization and continuity of the collagen fiber bundles as 

well as the interactions between fiber bundles, first for a small region of the sclera [34] and later 

for a wide region of the posterior pole incorporating the ONH,  as shown in Figure 1 [1].  

The direct fiber modeling framework employed in this model can be seen as an 

alternative to the conventional continuum approaches which employ constitutive models that 

homogenize the fibers and assume affine kinematics between individual fibers and macroscopic 

tissue deformation [35], without accounting for fiber-fiber interactions. Elsewhere we have 

shown that ignoring interweaving and fiber-fiber interactions can introduce substantial errors 

when estimating sclera fiber mechanical properties using inverse fitting [36]. Continuum 

homogenized models, and even highly simplified phenomenological models have been proven 

sufficient to capture gross and generic mechanical behavior of the eye. However, a thorough 

mechanistic understanding of the ONH region requires accurate prediction of fiber behavior, 

including both detailed fiber-level strains and its long-distance transmission. Our goal in this 

study was to compare the performance of a continuum model of ONH built using conventional 

techniques with the fiber model which explicitly incorporates the complex 3D organization and 

interaction of collagen fiber bundles [1]. To ensure a fair comparison, we constructed the  
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continuum model with identical geometrical, structural, and boundary specifications as for the 

fiber model. 

Specifically, we considered the fiber structure-related parameters, such as fiber 

dispersion, volume fraction, and orientation, as heterogeneous across the domain in the 

continuum model, directly calculating them based on the fiber structure reconstructed in the fiber 

model. We identified other material parameters following an inverse modeling approach to match 

the model predictions with experimentally measured average displacements at 30mm Hg. The 

comparison began with comparisons between the models’ predictions and experimental measures 

in terms of macro-level 3D tissue strain patterns and was followed by analyzing fiber-level long-

distance strain transmission; corresponding results will be presented and discussed. 

 

2. METHODS 

2.1 Continuum model geometry and boundary conditions.  

We constructed a continuum model that aimed to mirror the fiber model introduced in [1] 

and shown in Figure 1, specifically in terms of geometries of the sclera, LC, NT, pia mater and 

dura mater as well as the boundary conditions (Figure 2). The fiber model was constructed using 

PLM data obtained from cryosections of porcine ONH. It incorporates depth-dependent scleral 

fiber bundle distributions observed in PLM images, as well as longitudinal and circumferential 

fiber bundles in the pia mater and dura mater, effectively mirroring the complex three-

dimensional organization of collagen structures observed histologically. The model represents 

individual fiber bundles through beam elements while treating the LC and NT as continuum 

structures. Readers interested in a more comprehensive description of the fiber model's 

construction, including the assumptions and their implications, should consult [1]. As illustrated 

in figure 2, both models were subjected to an elevated IOP of 30 mmHg. The same radial 

displacements (RD) used in the fiber model were applied to the continuum model's periphery to 

simulate the radial tension of the sclera due to IOP. Although our goal in this work focused on 

the mechanical behavior of the sclera, as it was in our previous papers [1, 34, 37], the continuum 

model incorporated a LC and retrolaminar NT. These provide a robust set of boundary 

conditions.  
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Figure 1. Schematic of an eye cross-section with an enlarged view of posterior sclera 

(blue), LC (black), retrolaminar NT (grey), dura mater (red) and pia mater (purple) regions 

highlighted at the ONH. Boundary conditions included forces from IOP and displacements at the 

periphery.  (b) Example images of serial coronal sections through the ONH of a pig eye from the 

anterior to posterior side. PLM was used to determine the collagen fiber orientation at each pixel 

[38]. Colors in the images indicate in-plane fiber orientation. Brightness indicates the strength of 

the signal. Low signal occurs when there is no birefringent material, no collagen, or the signal is 

blocked, for instance by pigment. The pig LC and scleral canal are elliptical with the major axis 

along the Nasal- Temporal (N-T) direction and the minor axis along the inferior-superior (I-S) 

direction. The Sections were stacked sequentially to construct a fiber model for modelling the 

collagenous tissues in the ONH region [1]. (c) Longitudinal cut-model view of the fiber model 

along the I-S direction with only bundle centerlines shown. (d) An isometric view of the 

complete fiber model with full bundle width displayed.  

 

Figure 2. Schematic illustration of the geometry and boundary conditions of the fiber 

model and the continuum models. The same boundary conditions were applied to both models to 

simulate an inflation experiment. The continuum model was meshed using quadratic 10-noded, 

tetrahedral mixed-formulation elements (C3D10H in Abaqus). A coarser mesh was selected for 

the peripheral sclera while a finer mesh was generated for the region where the peripapillary 

sclera, laminar cribrosa, neural tissue, pia mater and dura mater are located. After a mesh 
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refinement analysis, it was decided that a mesh with ~78,000 elements and element size ranging 

from 0.1mm to 0.25mm was used for the simulation. 

2.2 Continuum model material properties  

The sclera, pia mater and dura mater in the continuum model were assumed to be 

incompressible, anisotropic, and heterogeneous. They were characterized using the Holzapfel-

Gasser-Ogden (HGO) strain energy function [39].  The form of strain energy function, as 

implemented in ABAQUS, is given by:  

 

𝑊 = 𝑊𝐺𝑟𝑜𝑢𝑛𝑑 + 𝑊𝐹𝑖𝑏𝑒𝑟#(1)  

W is total strain energy density, 𝑊𝐹𝑖𝑏𝑒𝑟  is the strain energy density of the anisotropic 

collagen fibers and 𝑊𝐺𝑟𝑜𝑢𝑛𝑑 is the isotropic strain energy density of the non-collagenous ground 

matrix.  

The fiber strain energy density was modeled as: 

𝑊𝐹𝑖𝑏𝑒𝑟 = 𝑉𝐹
𝑘1

2𝑘2
∑{exp[𝑘2〈𝐸𝛼〉2] − 1}

𝑁

𝛼=1

#(2)  

Where 𝑉𝐹  and 𝑘1represents the volume fraction and elastic modulus of collagen fibers. 

𝑘2 is a material constant that governs how the stiffness of the fibers changes with the stretching 

of the fiber.  N represents the number of fiber families. 

The strain like quantity, 𝐸𝛼, is expressed as: 

𝐸𝛼 = 𝜅(𝐼1̅ − 3) + (1 − 3𝜅)(𝐼4̅ − 1); 𝐼4̅ = 𝑴𝜶 ∙ 𝑪̅𝑴𝜶 #(3)  

It represents the deformation of the fiber family with the mean direction, 𝑴𝜶, denoting as 

a 3D unit vector and the fiber angular dispersion, κ. Here, 𝑪 ̅ = 𝐽−
2

3𝑪 is the modified right 

Cauchy-Green deformation tensor; and 𝐽 is the determinant of the deformation gradient 𝑭. 𝐼1̅ is 

the first invariant of 𝑪 ̅; and 𝐼4̅ is the squared stretches in the mean fiber direction, 𝑴𝜶. This 

model presumes that the orientation of the collagen fibers in each family is distributed 

rotationally symmetrically with respect to the mean preferred orientation 𝑴(𝜃, 𝜙) . This 

rotational symmetry implies that the fiber orientation distribution is independent of the elevation 

angle 𝜙, i.e., 𝜌(𝑴(𝜃, 𝜙)) →  𝜌(𝜃). The parameter, κ, is then defined as follows: 
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κ =  
1

4
∫ 𝜌(𝜃) sin3(𝜃) 𝑑

𝜋

0

𝜃 #(4)  

The parameter κ takes values within the range [0, 1/3]. When κ = 0, fibers are completely 

aligned in the mean fiber direction (no dispersion). When κ = 1/3, the fibers are randomly 

distributed, and the material becomes isotropic.  

The strain energy density equation for the ground material was modeled as a neo-

Hookean solid in HGO model, which has the form: 

𝑊𝐺𝑟𝑜𝑢𝑛𝑑 = (1 − 𝑉𝐹)𝐶10(𝐼1̅ − 3) + 
1

𝐷
(
(𝐽𝑒𝑙)2 − 1

2
− 𝑙𝑛𝐽𝑒𝑙)#(5)  

𝐶10 is a material constant defining the stiffness of the ground substance.  𝐷  value 

determines  the compressibility of the material and is set to be 0 to account to for the 

incompressibility of the tissue. 𝐽𝑒𝑙 is the elastic volume ratio.  

The LC and NT regions were modeled as linear elastic material (ELC = 0.1 MPa, ENT = 

0.01 MPa), same as the fiber model.   

2.2.1 Identification of heterogeneous fiber dispersion, volume fraction and mean 

orientation. 

The fiber structure-related parameters of the HGO model, including fiber dispersion 

κ, fiber volume fraction 𝑣, and mean fiber direction 𝑴, were determined on an element-by-

element basis based on the fiber structure of the fiber model reconstructed from 10 PLM images 

of porcine ONH coronal sections as shown in Figure 1. To faithfully represent the heterogeneous 

fiber structural properties while maintaining the smoothness of material parameters in the tissue, 

in-house code was developed to calculate element-wise values of these three parameters. Briefly, 

for each element of the meshed sclera, pia and dura mater, neighboring elements whose center 

points are within 0.4mm—twice the average element size—were selected along with this 

element as the region of interest (ROI). Fiber segments within the ROI were then extracted. The 

fiber volume fraction 𝑣  was calculated as the ratio of the total fiber segments volume, 

considering the fiber bundle cross-section, to the total volume of the ROI. The direction vectors 

of the fiber segments were repeated in proportion to their relative volumes within the ROI. These 

direction vectors were then fitted to a 3D π-periodic von Mises distribution to obtain the mean 
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fiber direction vector 𝑴 and the concentration parameter b. Because of the small element sizes in 

the continuum model, the fiber bundle orientations within an ROI were captured well by an 

orientation distribution function with a single fiber family (N=1). The fiber dispersion κ was then 

related to b as: 

κ =  
1

4
∫ 𝜌(𝜃, 𝑏) sin3(𝜃) 𝑑

𝜋

0

𝜃 #(6)  

Here, 𝜌(𝜃, 𝑏) is the 2D π-periodic von Mises distribution.  The derived distributions of 

calculated fiber dispersion κ, fiber volume fraction 𝑣 and mean fiber orientation 𝑴 are shown in 

Figure 3.  

 

Figure 3. Fiber structure and contours of structure parameters. Visualization of entire 

fibrous regions of the fiber model with scleral random (blue), scleral radial (orange), and scleral 

circumferential (green), pia (purple) and dura (red) fibers in anterior view, posterior view, a 

sectional and an isometric cut view along the nasal-temporal (N-T) direction (a). Maps of fiber 

dispersion (b), fiber volume fraction (c), and mean fiber orientation (c) for these fibrous regions 

in anterior, posterior, and the sectional cut views. Note that the fiber dispersion here is inversely 

related to its degree of anisotropy. The peripapillary scleral region ( indicated by the white 

arrows ) consists of green circumferential fibers and other types of fibers (a), indicating a highly 

dispersed or isotropic distribution of fibers in these regions, which is associated with higher fiber 

dispersion (b). 
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2.2.2 Identification of optimized matrix modulus, fiber modulus and exponential parameter 

The other three HGO constitutive parameters, including the modulus of matrix 𝐶10 , 

modulus of fibers 𝑢, and the exponential parameter 𝑘2 for fibers, were regarded as homogeneous 

across the tissue. These parameters were identified by inversely matching the IOP-induced 

posterior average displacement of the nerve region and peripapillary sclera (PPS), as well as 

average scleral canal expansion, with those derived from ex-vivo inflation experiments 

documented in the literature [40].  To determine optimized parameter values, a grid table formed 

by 𝐶10 = [0.001: 0.002: 0.2] MPa, 𝑢 = [20: 10: 200] MPa, 𝑘2 = [50: 50: 1000] was tested. The 

group of values that yielded the best match of simulated responses with the experimental data 

were regarded as the optimized parameter values. The finite element simulation was performed 

using the FE solver Abaqus/Standard. Customized code and the GIBBON toolbox [41] for 

MATLAB v2023 [42] were used for model pre/post-processing and inverse identification of 

optimized parameters. 

The simulation results of the continuum model with 𝐶10 = 0.013MPa, 𝑢 = 120 MPa and 

𝑘2 = 500  produced the best match with the experimental data in terms of posterior 

displacements of the nerve region and PPS as well as horizontal sclera expansion. Figure 

4 shows the predicted average displacements (dashed lines) with identified optimized material 

parameters of a porcine ONH from the fiber model (blue) and the continuum model (green) 

compared to the experimental measurements of different porcine eyes (circle symbols) obtained 

from ref. [40]. Note that the experimental displacements were measured over the ONH regions in 

the cross-section along the nasal-temporal (N-T) meridian direction. The same regions of the 

models were utilized to measure average model displacement. The shaded regions represent the 

standard deviation of experimental measurements from multiple eyes (n = 12). Albeit there is a 

slight difference of the response curves, the adjusted model predictions (solid lines) show 

excellent agreement with the experimental responses for all measurements. As expected, the 

actual model, without adjustment (dashed grey lines), does not match the experiments as well 

because of the difference in reference state. Please see the study introducing the fiber model for 

more on this topic [1]. 
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Figure 4.  Mechanical validation of the fiber (blue lines) and continuum(green lines) 

models. The comparisons of (a) the mean posterior displacement of the porcine peripapillary 

sclera (PPS), (b) the mean posterior displacement of the optic nerve region (LC and NT parts), 

and (c) the mean scleral canal expansion between the inflation experiments (circle symbols) from 

ref. [40] and the models (lines).  Note that the specimen configurations at 5 mmHg were 

employed as the undeformed configuration for measuring ONH deformations in the experiments 

while the configuration at 0 mmHg was used as the undeformed configuration in the model. 

Therefore, the model responses are adjusted by 5 mm Hg in the IOP axis to account for 

differences in reference configurations. The shaded regions in (a)-(c) represent the standard 

deviation of experimental measurements for multiple porcine eyes (n = 12). The dashed and solid 

lines in (a)-(c) represent the actual and adjusted responses of the models, respectively. The insets 

in (a)-(c) indicate the regions used for calculating the mean posterior displacements and the canal 

expansion.  

2.3 Comparison of strains between the continuum and the fiber models  

The displacement match in Figure 4 served as a prerequisite for the subsequent 

comparison of strain patterns. The rationale behind this approach is that if the model intrinsically 

represents the tissue structure well, using optimized material properties derived from inversely 

matching the experimental displacement response, it should also match the experimental tissue 

strain patterns and reflect the fiber-level long-distance strain transmission behavior. As illustrated 

in Figure 5, we calculated and compared both models in terms of the three-dimensional tissue-

level strain patterns and fiber strains. 
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Figure 5.  A flowchart showing the procedures in deriving 3D tissue-level strains and 

fiber strains for the fiber (FM) and continuum (CM) models.  The blue boxes correspond to steps 

and variables related to the FM, while the green boxes represent those for the CM. Red dashed 

boxes indicate specific methods or transformations employed, such as 3D least-squares fitting for 

the FM and coordinate transformation to spherical coordinates for both models. The deformation 

gradient tensor 𝑭 in the CM was acquired directly from the simulation. For the FM, 𝑭 was also 

calculated at the centroids of continuum elements based on nodal displacements to ensure 

consistent comparisons. The details of this calculation can be found in section 2.3.1.  Tissue-level 

strains in radial, circumferential and meridional directions were computed by transforming the 

strain tensor E from Cartesian coordinate to spherical coordinate, same as the approach utilized 

in acquiring the experimental tissue strain [43]. In the FM, fiber strain refers to the axial strain of 

the fiber element, derived directly from simulation results. For the CM, fiber strain was 

determined by projecting the 3D strain tensor E along the fiber element direction, following the 

affine deformation (AD) assumption commonly used in continuum kinematics [35]. This 

approach relies on the affine deformation (AD) assumption in the continuum kinematics. 

Employing the same AD assumption, fiber strain was also calculated based on the strain tensor 

derived from FM, and we refer this as the fiber strain for the fiber model with affine deformation 

(FMAD). 

2.3.1 Comparisons of three-dimensional tissue strain patterns in sclera 

Several studies have reported the tissue-level 3D strain patterns of the LC, NT, and sclera 

regions derived from experimental inflation tests [40, 43-46]. We calculated the 3D tissue strains 

in the radial, circumferential, and meridional directions from the continuum and fiber models at 
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30 mm Hg, following the procedures illustrated in Figure 5. In this study, we focused the 

comparison on the sclera region. The experimental strains reported for the sclera regions were 

derived from the human specimens [43, 45], ], whereas both models were constructed using data 

from a porcine specimen. While we developed a technique that allowed for reasonable 

comparison between the numerical models and experimental data, it is important to note that 

these data arise from fundamentally different types of analysis. Given these inherent differences, 

we concentrated on comparing the global strain patterns in the tissue rather than focusing on 

specific strain magnitudes. Our objective was not to determine which model could perfectly 

replicate the experimental results but to assess which model better captures the strain patterns on 

a broader scale. 

For both models, the green strain tensor 𝑬  at the centroid of each continuum element was 

calculated as 𝑬 = 0.5(𝑭𝑻𝑭 − 1) where 𝑭 is the deformation gradient tensor. For the continuum 

model, 𝑭 was acquired directly from the simulation. For the fiber model, it was postprocessed 

based on the displacements of fiber nodes derived from the simulation. For each element’s 

centroid in the continuum model, neighboring fiber nodes within 400um  were selected and 

corresponding displacements vectors in the Cartesian coordinate were denoted as 𝑈𝑖 (𝑖 =

𝑥, 𝑦 , 𝑧) . The deformation gradient tensor 𝑭  in the Cartesian coordinate was calculated as 

follows: 

𝐹 = 

[
 
 
 
 
 
 
𝜕𝑈𝑥

𝜕𝑥
+ 1

𝜕𝑈𝑥

𝜕𝑦

𝜕𝑈𝑥

𝜕𝑧
𝜕𝑈𝑦

𝜕𝑥

𝜕𝑈𝑦

𝜕𝑦
+ 1

𝜕𝑈𝑦

𝜕𝑧
𝜕𝑈𝑧

𝜕𝑥

𝜕𝑈𝑧

𝜕𝑦

𝜕𝑈𝑧

𝜕𝑧
+ 1

]
 
 
 
 
 
 

#(7)  

where the displacement gradients 𝜕𝑈𝑖 𝜕𝑈𝑗⁄  were obtained by a 3D least-squares method 

[47, 48]. 

The derived Cartesian strain tensor 𝑬 was transformed into spherical strain tensor 𝑬𝒔𝒑𝒉 in 

the spherical coordinate via a transformation matrix T as 𝑬𝒔𝒑𝒉 = 𝑇𝑬𝑇𝑇 [46, 49]. The T is given 

by: 
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𝑇 = [

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

] #(8)  

Where  𝜃 is the azimuth angle and φ is the elevational angle as shown in Figure 6. The 

diagonal components of derived spherical strain tensor 𝑬𝒔𝒑𝒉 represent the normal strain in radial 

𝐸𝑟, meridional 𝐸𝜑 and circumferential 𝐸𝜃 direction as denoted in Figure 6, respectively.  

 

Figure 6.   (a): Schematic of the 3D cartesian coordinate (X, Y, Z) and spherical 

coordinate (𝒓, 𝜽, 𝝋)  systems. (b): Illustration of the radial, meridional and circumferential 

directions for the ONH model in cut view (N-T direction) and anterior view.  The radial direction 

was defined to be aligned with the through-thickness direction of the ONH, which agrees with 

the experimental data  

2.4 Comparison of fiber strains between the continuum and fiber models.  

We followed the procedures depicted in Figure 5 to calculate and compare fiber strains 

between the CM, FM, and FMAD at 30 mm Hg. This comparison focused on the distribution of 

fiber strains for fiber elements along each entire fiber in scleral fiber bundles. To quantify the 

degree of variation in fiber strains, we calculated the standard deviations of fiber strains along 

each entire fiber derived from the three models for all fibers 

3. RESULTS 

3.1 Comparison of three-dimensional tissue strains between the continuum and fiber 

models  

Predicted tissue-level radial strain patterns from the FM and CM were compared to 

experimentally measured patterns from a human eye [43] (Figure 7). The experimentally 

measured radial strains exhibited depth-dependent variability from the anterior to the posterior 

side, with significant compression in the anterior, whereas the posterior side of the LC, NT and 
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PPS were less compressed or even stretched. In addition to the study shown in Figure 7. a, this 

pattern has also been reported in another study for human sclera tissue [46].  The FM accurately 

replicated the depth-dependent variation of the radial strain for the PPS, whereas the CM did not. 

It is important to acknowledge that the LC and NT part, modeled as a continuum in both models, 

did not reproduce the experimental radial strain patterns. 

The FM also replicated some interesting features of circumferential and meridional strain 

patterns observed experimentally from the posterior side of a human sclera [45], whereases the 

CM failed to (Figure 8). Here, the circumferential strain seems to display a radial pattern, with 

bands emanating from the scleral canal and extending outward in all directions. In contrast, the 

meridional strain tends to follow a ring-like pattern, with large strains surrounding the scleral 

canal. The FM effectively captured these contrasting patterns and the pronounced near-canal 

meridional strains. 

 

Figure 7.  A comparison of the experimental (a) [43], the FM predicted (b) and the CM 

predicted (c) radial strains for the sclera region in the sagittal section of the ONH along the 

Nasal-Temporal (NT) direction at 30 mm Hg. The red arrows indicate the direction of radial 

strain at through-thickness points, represented by corresponding dashed lines, which are oriented 

from anterior to posterior.  The detailed direction convention can also be found in Figure 6. The 

sagittal region was divided into ten layers of equal thickness along the through-thickness 

direction, with the average radial strain calculated for each layer and plotted against the depth. 

The experimental data show a depth-dependent, step-function variation in strain, with greater 

compression at the anterior and lesser compression or extension at the posterior. Note that the 

fiber model reflected this variation pattern, but the continuum model failed to reflect it. 
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3.2 Comparison of fiber strains between the continuum and fiber models. 

The fiber strains derived from the FM, CM and FMAD for fiber elements along each 

entire fiber are shown in Figure 9. Visually, the fiber strains in the FM appear quite smooth along 

each fiber but vary significantly in the CM and FMAD. This observation is further supported by 

the results of the standard deviations of fiber element strains along each fiber for all fibers, as 

shown in Figure 10. Overall, the fiber strains exhibit a much lower degree of variation in the FM 

than in the CM and FMAD along each fiber. 

 

Figure 8. A comparison of the experimental (a), the FM predicted (b) and the CM 

predicted (c) circumferential and meridional scleral strain patterns from the posterior view of the 

ONH at 30 mm Hg. Detailed direction conventions for the circumferential and meridional strains 

are described in Figure 6. The plots of model predictions (b and c) were adjusted to align with 

the experimental plots in terms of the positions of the four quadrants: nasal (N), temporal (T), 

superior (S), and inferior (I). The experimental patterns, derived from a human sclera specimen 

[45], interestingly show contrasting global strain behaviors: the circumferential strain radiates 

from the sclera canal, forming a pattern with outward-extending bands, whereas the meridional 

strain appears as a series of open, ring-shaped bands with high values concentrated near the 

canal. These contrasting global patterns and pronounced near-canal meridional strains were 

captured by the fiber model but not by the continuum model. 
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Figure 9. Visualization of fiber strains for all sclera fibers (anterior view in the first 

column and posterior view in the second column) and seven selected whole fibers (third 

columns) in FM, CM, and FMAD. The selection of seven fibers allows for a clearer investigation 

of the fiber strain changes along each fiber. Further information on the fiber strain calculation 

methodologies for each model can be found in Figure 5 and Section 2.3.1. Take the fiber 

indicated by the arrows as an example. Note how the smooth strains along the fiber in the FM 

were disrupted in the CM and FMAD due to the enforcement of affine deformation in calculating 

the fiber strains. Interestingly, the fiber strains within the FM exhibit depth-dependent variation, 

with larger strains evident in the anterior view and smaller strains in the posterior view. This 

variation appears to be less pronounced or absent in the CM and FMAD models.  

 

Figure 10. Scatterplots of the standard deviations of fiber element strains along each of 

the 1325 fibers derived from CM and FM in (a) and from FMAD and FM in (b). Fibers are 

indexed according to the standard deviation of fiber strains from the CM in (a) and FMAD in (b). 

The plots highlight that fiber strains from FM are notably consistent along each fiber (low 

standard deviations), with 97% of fibers from FM exhibiting standard deviations below 

0.01.whereas those calculated enforcing affine deformation in continuum kinematics (CM and 

FMAD) show significantly more variability.   
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4. DISCUSSION 

In this study, we employed the ONH as a test case to assess the biomechanical 

performance of our FM compared to a conventional CM developed using standard techniques. 

Our findings reveal that, while both models adequately matched the globally averaged 

displacement responses induced by IOP observed in experiments, they diverged dramatically in 

their ability to replicate specific 3D tissue-level strain patterns. Notably, the FM excelled in 

capturing the depth-dependent variability of radial strain, the ring-like pattern of meridional 

strain, and the radial pattern of circumferential strain —patterns which the CM failed to 

reproduce. Moreover, the FM preserved the smooth strain transmission along each fiber, in 

contrast to the conventional CM, which disrupted this transmission. Below, we discuss the 

motivation and rationale for the study as well as the significance of each finding. 

Collagen fibers are the main load-bearing component of soft tissues but difficult to 

incorporate into models. Conventional CMs represent the collagenous fibers in soft tissues as 

homogenized continuum structures, which are effective for predicting macro-scale responses but 

lack the capacity to provide detailed fiber-level behaviors necessary to fully comprehend fibrous 

tissue biomechanics [22, 24, 45, 50]. To overcome these shortcomings, we have developed a FM 

that explicitly incorporates the complex 3D organization and interactions of collagen fiber 

bundles within the ONH. The motivation for this research is to highlight the significant 

advantages of our fiber model over conventional continuum models. By using the ONH as a test 

case, we aim to demonstrate that our model can more accurately predict both the intricate tissue-

level strain patterns and the long-distance strain transmission along the fibers, which are crucial 

for advancing our understanding of fibrous tissue biomechanics and linking tissue biomechanics 

with cellular mechanobiology [51].   

We acknowledge that the models we compare are distinct, by nature, and therefore that 

there will always be differences between them. Nevertheless, we contend that the comparison 

between them is fair, for the following reasons: Both models were developed with identical 

geometric and boundary specifications, ensuring a level basis for comparison When it comes to 

material properties, the two models account for the properties of the same fiber structure but 

intrinsically diverge in their approaches to representing it. The FM accurately reconstructed the 

fiber structure, assigning a linear stiffness to each fiber bundle. In contrast, the CM simplifies the 
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fiber structure into a homogenized continuum and employs an anisotropic, structurally motivated 

constitutive model to account for the material properties. In this constitutive model, fiber 

structure-related parameters—such as volume fraction, dispersion, and mean orientation were 

directly calculated and assigned to each mesh element based on the detailed fiber structure used 

in the fiber model. For each element, the region of interest (ROI) is defined as twice the average 

element size to ensure inclusion of surrounding elements. This approach guarantees the 

smoothness of the material domain and replicates the local structural properties as accurately as 

possible. Other material parameters, including the modulus of the matrix and fibers, and the 

exponential parameter, were assumed to be homogeneous across the domain. These parameters 

were inversely identified by matching the model predictions with experimentally measured 

responses. It is important to note that the assumption of homogeneity for these parameters is not 

arbitrary but follows standard practice in these types of studies [19, 21, 23]. Furthermore, unlike 

previous studies that typically rely on estimated parameter values from prior research, our study 

enhances the accuracy and relevance of our models by employing an optimization process 

through inverse modeling, aligning with the method used in determining fiber stiffness for the 

FM [1]. However, it is crucial to recognize that despite our efforts to align the models as closely 

as possible, the two approaches remain inherently distinct. No modeling approach can perfectly 

replicate another due to fundamental differences. Thus, while our efforts ensure a fair 

comparison, they also highlight the unique contributions and limitations inherent in each 

modeling approach. 

Our results demonstrated that both models performed equally well in replicating the 

experimentally measured nonlinear IOP-induced average displacement responses of the ONH 

through an inverse modeling approach, with one parameter optimized for the FM and three for 

the CM (Figure 4). However, significant differences emerged when it came to capturing 3D 

tissue-level strain patterns in the sclera region. The FM, despite using only one parameter to 

represent the linear, isotropic fiber bundles modeled as beams, was able to capture both the 

nonlinear IOP-induced mean displacement responses of the ONH and the 3D strain patterns in 

the sclera. In contrast, although the CM employed six constitutive parameters and could replicate 

the nonlinear displacement responses, it failed to capture the 3D strain patterns of the sclera.  

Previous studies [40, 44] have also reported similar depth-dependent radial strain patterns in the 

porcine LC and NT, showing significant anterior compression and posterior stretching. This 
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raises the possibility that if the fibrous structures of the LC and NT tissue were also explicitly 

modeled, similar accurate results could be achieved for these regions.  Further, studies have 

reported that the average meridional strain in the porcine ONH is greater than the circumferential 

strain [46, 52, 53]. This finding is consistent with the results from the FM, which showed a larger 

average meridional strain of 0.089 compared to an average circumferential strain of 0.0265. In 

contrast, the CM indicated more pronounced stretching in the circumferential direction, with 

average meridional and circumferential strains of 0.017 and 0.042, respectively. This can also be 

observed in Figure 8. However, we have not highlighted this finding as a main result of our study 

because it is derived from just one specimen. Nevertheless, it underscores the potential of the 

FM. These findings highlight that while the CM is effective for modeling large-scale tissue 

displacements, it is limited in its ability to represent complex 3D deformation patterns. 

Conversely, the FM shows considerable promise in capturing these detailed strain patterns, 

emphasizing its potential to provide a more accurate representation of biomechanical behavior in 

fibrous tissues. 

In the second stage of our comparison, we focused on strain transmission along each 

fiber. The FM allows for direct visualization of fiber kinematics and consistently demonstrated 

smooth strain distribution along each fiber, as evidenced in Figure 9. In contrast, the CM 

exhibited substantial variation in fiber strain (Figures 9 and 10) due to its inherent kinematic 

assumptions. To address concerns that the observed "unsmoothness" or variation in fiber strain 

within the CM was due to discrepancies in tissue-level strain distributions between the 

continuum and FMs, we introduced the FM with affine deformation (FMAD). This model 

recalculated fiber strain using the same affine deformation assumption typically applied in 

continuum kinematics but based the calculation on the 3D strain tensor derived directly from the 

FM. This approach ensures that the observed strain "unsmoothness" is not merely a result of 

differences in the macro-level strain distributions between the models. However, even when 

FMAD was employed to calculate the fiber strain, the "unsmoothness" remained significant, as 

illustrated in Figures 9 and 10. This persistence of variation suggests that the issue extends 

beyond simple alignment of tissue-level strains and points to fundamental limitations of the 

affine deformation assumptions in continuum kinematics. This finding demonstrates the 

reliability of the FM and underscores the need for a thorough evaluation of the CM’s ability to 

link macroscopic tissue responses with cellular and sub-cellular level activities. 
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We recognize the substantial expertise within the field dedicated to advancing CMs of 

fibrous soft tissues. To bridge the gap between macroscopic observations and microscale 

behavior, multiscale CMs based on representative volume elements (RVEs) have been developed 

[54]. These models diverge from traditional constitutive material models by accounting for fiber-

fiber interactions and non-affine deformations, as detailed in [55-57]. The RVE technique 

employs a two-scale sequential strategy, homogenizing the microscale behavior of discrete RVEs 

to derive the macroscale CM response. Each RVE, representing a small patch of networked 

fibers, influences the behavior at every integration point of the broader CM. Although 

innovative, the RVE method has limitations, especially due to its reliance on the continuum 

framework, such as the assumption of fiber independence among elements, which prevents fibers 

from crossing element boundaries or interacting with fibers within adjacent elements. 

Additionally, the homogeneous loading of RVE faces with displacements derived directly from 

the macroscopic solution implies an affine assumption for fiber displacements at the boundary, 

potentially oversimplifying the complex structures and kinematics of real tissues. Therefore, 

despite advancements made by the RVE method, its intrinsic limitations associated with the 

continuum framework persist, and we believe that the FM outperforms it, particularly in 

accurately capturing detailed fiber kinematics and long-range strain transmission in fibrous 

tissues. 

It is important to acknowledge several limitations in this study. Firstly, the two models 

were constructed using data from a single porcine eye specimen, while the experimental 3D 

strain patterns for the sclera were derived from human eyes (see Figures 7 and 8). However, 

consistent depth-dependent step function variations in the radial strain patterns of the LC and NT 

have been reported in both porcine and human specimens, with porcine specimens showing a 

significantly greater magnitude of anterior compression and posterior stretching [40, 43, 44, 46]. 

Additionally, human specimens exhibit similar depth-dependent strain patterns in the LC, NT, 

and sclera [40, 44]. Therefore, we hypothesize that both human and porcine sclera display 

similar strain patterns, with individual specimen differences likely affecting strain magnitudes 

more than the patterns themselves. This study focused on comparing the strain patterns rather 

than absolute values, reinforcing the relevance of the results despite the use of different species. 
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Secondly, as previously mentioned in the manuscript, the modulus of fiber, matrix, and 

the exponential parameters were assumed to be homogeneous throughout the fibrous region and 

were inversely identified. Assigning heterogeneous properties might improve the match of strain 

patterns in CM; however, the current settings already provide a good approximation of global 

displacement. If we considered these parameters as heterogeneous, defining a suitable 

distribution of them across the domain would be challenging. Additionally, the inverse fitting 

process would become extremely complicated, computationally expensive, and difficult to 

achieve unique solutions based on the currently used IOP-average displacement response. It 

remains unknown whether using experimentally measured deformation patterns as objectives for 

inverse modeling would succeed in accurately determining heterogeneous mechanical properties. 

However, even if such a match were achieved, it would mean that the CM requires much more 

complex inverse modeling and more material parameters than the FM to match the 3D strain 

patterns. Moreover, as discussed previously in the manuscript, matching macroscopic strain 

patterns does not resolve the 'unsmoothness' of fiber strains under the affine deformation 

assumption. 

Thirdly, the incompressibility assumption commonly used in modeling ONH [13, 19, 21, 

22, 58-61], and other soft tissues [62-65] has been widely acknowledged. However, experiments 

have shown that the ONH and sclera exhibit volumetric compression under inflation [46, 66, 67], 

suggesting a reconsideration of this assumption. Compressibility of the tissue in the simulations 

could be achieved through tuning the parameter D. However, this would significantly increase 

the computational burden. It is still unclear whether assuming compressibility would improve the 

match of strain patterns. 

Fourthly, the LC and NT are currently modeled as a homogenized continuum with linear 

and isotropic material properties in both models. It is important to clarify that our intent in this 

study, and in [1], was to focus on the fibrous structure and mechanics of the sclera. The tissues of 

the canal, namely the LC and NT, were incorporated solely to ensure that the sclera was modeled 

with reasonable boundary conditions. Therefore, we were satisfied to model them as continuum 

structures with linear elastic materials. We acknowledge that this is not typically the case, and 

most studies in the literature tend to focus on the LC while using the sclera for boundary 

conditions. However, we are not the first to take the opposite approach [68]. Our emphasis on the 
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sclera is also why we believe it is appropriate to direct our attention to the sclera when 

comparing our model predictions with experimental results. Additionally, although the sclera was 

modeled as anisotropic and non-homogeneous in the CM, this approach did not successfully 

match the experimental strain patterns. Given these outcomes, we suspect that modeling the LC 

and NT as a continuum with anisotropic and heterogeneous properties could potentially yield 

more precise results on the behavior of these tissues. Moreover, as discussed elsewhere in the 

manuscript, we believe that explicitly modeling the fibrous structures of tissues in the LC and 

NT, similar to the sclera fibers in the FM, could lead to greater accuracy.  

In conclusion, using the ONH as a test case, the FM demonstrates significant advantages 

over the CM in modeling fibrous tissues, particularly in its ability to accurately capture intricate 

3D strain patterns and fiber kinematics, which are essential for understanding tissue 

biomechanics. While the FM has its limitations—such as the use of representative collagen fiber 

density, exclusion of the hydrated matrix, and assumptions about frictionless interactions and 

fiber crimp—it still represents a critical step forward in advancing biomechanical modeling. 

These limitations, as discussed in detail in the paper [1], provide opportunities for future 

refinement. Despite these challenges, we believe the insights from our study underscore FM’s 

potential and, more ambitiously, its necessity for further development. This model holds promise 

for studying the biomechanics and mechanobiology of the ONH and other fibrous soft tissue. 

5. REFERENCES 

[1] M.R. Islam, F. Ji, M. Bansal, Y. Hua, I.A. Sigal, Fibrous finite element modeling of the optic nerve head 
region, Acta Biomaterialia 175 (2024) 123-137. 

[2] S. Resnikoff, D. Pascolini, D. Etya'ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel, S.P. Mariotti, Global 
data on visual impairment in the year 2002, Bull World Health Organ 82(11) (2004) 844-51. 

[3] Y.-C. Tham, X. Li, T.Y. Wong, H.A. Quigley, T. Aung, C.-Y. Cheng, Global Prevalence of Glaucoma and 
Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis, 
Ophthalmology 121(11) (2014) 2081-2090. 

[4] G.R. Howell, I. Soto, R.T. Libby, S.W. John, Intrinsic axonal degeneration pathways are critical for 
glaucomatous damage, Exp Neurol 246 (2013) 54-61. 

[5] R.W. Nickells, G.R. Howell, I. Soto, S.W. John, Under pressure: cellular and molecular responses during 
glaucoma, a common neurodegeneration with axonopathy, Annu Rev Neurosci 35 (2012) 153-79. 

[6] H.A. Quigley, E.M. Addicks, W.R. Green, A.E. Maumenee, Optic nerve damage in human glaucoma. II. 
The site of injury and susceptibility to damage, Arch Ophthalmol 99(4) (1981) 635-49. 

[7] H.A. Quigley, Glaucoma: Macrocosm to Microcosm The Friedenwald Lecture, Investigative 
Ophthalmology & Visual Science 46(8) (2005) 2663-2670. 

                  



23 

 

[8] I.A. Sigal, R.A. Bilonick, L. Kagemann, G. Wollstein, H. Ishikawa, J.S. Schuman, J.L. Grimm, The Optic 
Nerve Head as a Robust Biomechanical System, Investigative Ophthalmology & Visual Science 53(6) 
(2012) 2658-2667. 

[9] Z. Zhu, S. Waxman, B. Wang, J. Wallace, S.E. Schmitt, E. Tyler-Kabara, H. Ishikawa, J.S. Schuman, M.A. 
Smith, G. Wollstein, I.A. Sigal, Interplay between intraocular and intracranial pressure effects on the 
optic nerve head in vivo, Experimental Eye Research 213 (2021) 108809. 

[10] J.C. Downs, M.D. Roberts, I.A. Sigal, Glaucomatous cupping of the lamina cribrosa: a review of the 
evidence for active progressive remodeling as a mechanism, Experimental eye research 93(2) (2011) 
133-140. 

[11] I.A. Sigal, J.G. Flanagan, C.R. Ethier, Factors Influencing Optic Nerve Head Biomechanics, Investigative 
Ophthalmology & Visual Science 46(11) (2005) 4189-4199. 

[12] A.J. Bellezza, R.T. Hart, C.F. Burgoyne, The optic nerve head as a biomechanical structure: initial finite 
element modeling, Invest Ophthalmol Vis Sci 41(10) (2000) 2991-3000. 

[13] I.A. Sigal, J.G. Flanagan, I. Tertinegg, C.R. Ethier, Predicted extension, compression and shearing of 
optic nerve head tissues, Experimental Eye Research 85(3) (2007) 312-322. 

[14] I.A. Sigal, J.G. Flanagan, I. Tertinegg, C.R. Ethier, Modeling individual-specific human optic nerve 
head biomechanics. Part II: influence of material properties, Biomech Model Mechanobiol 8(2) 
(2009) 99-109. 

[15] I.A. Sigal, J.G. Flanagan, I. Tertinegg, C.R. Ethier, Modeling individual-specific human optic nerve 
head biomechanics. Part I: IOP-induced deformations and influence of geometry, Biomechanics and 
Modeling in Mechanobiology 8(2) (2009) 85-98. 

[16] I.A. Sigal, H. Yang, M.D. Roberts, C.F. Burgoyne, J.C. Downs, IOP-induced lamina cribrosa 
displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-
specific models, Invest Ophthalmol Vis Sci 52(3) (2011) 1896-907. 

[17] I.A. Sigal, H. Yang, M.D. Roberts, J.C. Downs, Morphing methods to parameterize specimen-specific 
finite element model geometries, Journal of Biomechanics 43(2) (2010) 254-262. 

[18] S.L.Y. Woo, A.S. Kobayashi, W.A. Schlegel, C. Lawrence, Nonlinear material properties of intact 
cornea and sclera, Experimental Eye Research 14(1) (1972) 29-39. 

[19] R. Grytz, K. Krishnan, R. Whitley, V. Libertiaux, I.A. Sigal, C.A. Girkin, J.C. Downs, A mesh-free 
approach to incorporate complex anisotropic and heterogeneous material properties into eye-
specific finite element models, Computer Methods in Applied Mechanics and Engineering 358 (2020) 
112654. 

[20] R. Grytz, G. Meschke, J.B. Jonas, The collagen fibril architecture in the lamina cribrosa and 
peripapillary sclera predicted by a computational remodeling approach, Biomechanics and Modeling 
in Mechanobiology 10(3) (2011) 371-382. 

[21] A. Karimi, R. Grytz, S.M. Rahmati, C.A. Girkin, J.C. Downs, Analysis of the effects of finite element 
type within a 3D biomechanical model of a human optic nerve head and posterior pole, Computer 
Methods and Programs in Biomedicine 198 (2021) 105794. 

[22] A. Karimi, S.M. Rahmati, R. Razaghi, C.A. Girkin, J. Crawford Downs, Finite element modeling of the 
complex anisotropic mechanical behavior of the human sclera and pia mater, Computer Methods 
and Programs in Biomedicine 215 (2022) 106618. 

[23] A.P. Voorhees, N.J. Jan, I.A. Sigal, Effects of collagen microstructure and material properties on the 
deformation of the neural tissues of the lamina cribrosa, Acta Biomaterialia 58 (2017) 278-290. 

[24] L. Zhang, J. Albon, H. Jones, C.L.M. Gouget, C.R. Ethier, J.C.H. Goh, M.J.A. Girard, Collagen 
Microstructural Factors Influencing Optic Nerve Head Biomechanics, Investigative Ophthalmology & 
Visual Science 56(3) (2015) 2031-2042. 

                  



24 

 

[25] H.G. Kollech, A. Ayyalasomayajula, R. Behkam, E. Tamimi, K. Furdella, M. Drewry, J.P. Vande Geest, A 
Subdomain Method for Mapping the Heterogeneous Mechanical Properties of the Human Posterior 
Sclera, Front Bioeng Biotechnol 7 (2019) 129. 

[26] A. Gogola, N.J. Jan, B. Brazile, P. Lam, K.L. Lathrop, K.C. Chan, I.A. Sigal, Spatial Patterns and Age-
Related Changes of the Collagen Crimp in the Human Cornea and Sclera, Invest Ophthalmol Vis Sci 
59(7) (2018) 2987-2998. 

[27] A. Gogola, N.J. Jan, K.L. Lathrop, I.A. Sigal, Radial and Circumferential Collagen Fibers Are a Feature 
of the Peripapillary Sclera of Human, Monkey, Pig, Cow, Goat, and Sheep, Invest Ophthalmol Vis Sci 
59(12) (2018) 4763-4774. 

[28] N.J. Jan, K. Lathrop, I.A. Sigal, Collagen Architecture of the Posterior Pole: High-Resolution Wide 
Field of View Visualization and Analysis Using Polarized Light Microscopy, Invest Ophthalmol Vis Sci 
58(2) (2017) 735-744. 

[29] B. Yang, B. Brazile, N.J. Jan, Y. Hua, J. Wei, I.A. Sigal, Structured polarized light microscopy for 
collagen fiber structure and orientation quantification in thick ocular tissues, J Biomed Opt 23(10) 
(2018) 1-10. 

[30] B. Yang, N.J. Jan, B. Brazile, A. Voorhees, K.L. Lathrop, I.A. Sigal, Polarized light microscopy for 3-
dimensional mapping of collagen fiber architecture in ocular tissues, J Biophotonics 11(8) (2018) 
e201700356. 

[31] P.-Y. Lee, H. Schilpp, N. Naylor, S.C. Watkins, B. Yang, I.A. Sigal, Instant polarized light microscopy pi 
(IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues, Optics and 
Lasers in Engineering 166 (2023) 107594. 

[32] P.-Y. Lee, B. Yang, Y. Hua, S. Waxman, Z. Zhu, F. Ji, I.A. Sigal, Real-time imaging of optic nerve head 
collagen microstructure and biomechanics using instant polarized light microscopy, Experimental Eye 
Research 217 (2022) 108967. 

[33] F. Ji, M. Quinn, Y. Hua, P.Y. Lee, I.A. Sigal, 2D or not 2D? Mapping the in-depth inclination of the 
collagen fibers of the corneoscleral shell, Exp Eye Res 237 (2023) 109701. 

[34] F. Ji, M. Bansal, B. Wang, Y. Hua, M.R. Islam, F. Matuschke, M. Axer, I.A. Sigal, A direct fiber approach 
to model sclera collagen architecture and biomechanics, Experimental Eye Research 232 (2023) 
109510. 

[35] Y. Lanir, Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology, Journal of 
Elasticity 129(1) (2017) 7-48. 

[36] B. Wang, Y. Hua, B.L. Brazile, B. Yang, I.A. Sigal, Collagen fiber interweaving is central to sclera 
stiffness, Acta Biomater 113 (2020) 429-437. 

[37] A.P. Voorhees, N.J. Jan, Y. Hua, B. Yang, I.A. Sigal, Peripapillary sclera architecture revisited: A 
tangential fiber model and its biomechanical implications, Acta Biomater 79 (2018) 113-122. 

[38] N.J. Jan, J.L. Grimm, H. Tran, K.L. Lathrop, G. Wollstein, R.A. Bilonick, H. Ishikawa, L. Kagemann, J.S. 
Schuman, I.A. Sigal, Polarization microscopy for characterizing fiber orientation of ocular tissues, 
Biomed Opt Express 6(12) (2015) 4705-18. 

[39] T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed 
collagen fibre orientations, J R Soc Interface 3(6) (2006) 15-35. 

[40] E. Pavlatos, Y. Ma, K. Clayson, X.J. Pan, J. Liu, Regional Deformation of the Optic Nerve Head and 
Peripapillary Sclera During IOP Elevation, Investigative Ophthalmology & Visual Science 59 (2018) 
3779 - 3788. 

[41] K.M. Moerman, The Geometry and Image-Based Bioengineering Add-On, The Journal of Source 
Software 3 (2018) 506. 

[42] T.M. Inc., MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc., The 
MathWorks Inc., 2022. 

                  



25 

 

[43] Y. Ma, E. Pavlatos, K. Clayson, X. Pan, S. Kwok, T. Sandwisch, J. Liu, Mechanical Deformation of 
Human Optic Nerve Head and Peripapillary Tissue in Response to Acute IOP Elevation, Invest 
Ophthalmol Vis Sci 60(4) (2019) 913-920. 

[44] E. Pavlatos, X. Pan, R.T. Hart, P.A. Weber, J. Liu, ONH Deformation in Porcine Eyes Using Ultrasound 
Speckle Tracking, Investigative Ophthalmology & Visual Science 57(12) (2016) 3568-3568. 

[45] B. Coudrillier, C. Boote, H.A. Quigley, T.D. Nguyen, Scleral anisotropy and its effects on the 
mechanical response of the optic nerve head, Biomech Model Mechanobiol 12(5) (2013) 941-63. 

[46] S. Kwok, Y. Ma, X. Pan, J. Liu, Three-Dimensional Ultrasound Elastography Detects Age-Related 
Increase in Anterior Peripapillary Sclera and Optic Nerve Head Compression During IOP Elevation, 
Invest Ophthalmol Vis Sci 64(7) (2023) 16. 

[47] F. Kallel, J. Ophir, A Least-Squares Strain Estimator for Elastography, Ultrasonic Imaging 19(3) (1997) 
195-208. 

[48] Y. Ma, E. Pavlatos, K. Clayson, S. Kwok, X. Pan, J. Liu, Three-Dimensional Inflation Response of 
Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography, J Biomech Eng 142(5) 
(2020) 0510131-7. 

[49] L. Anand, S. Govindjee, Continuum Mechanics of Solids, Oxford University Press2020. 
[50] S.A. Schwaner, B.G. Hannon, A.J. Feola, C.R. Ethier, Biomechanical properties of the rat sclera 

obtained with inverse finite element modeling, Biomech Model Mechanobiol 19(6) (2020) 2195-
2212. 

[51] J.D. Humphrey, E.R. Dufresne, M.A. Schwartz, Mechanotransduction and extracellular matrix 
homeostasis, Nat Rev Mol Cell Biol 15(12) (2014) 802-12. 

[52] B. Coudrillier, J. Tian, S. Alexander, K.M. Myers, H.A. Quigley, T.D. Nguyen, Biomechanics of the 
Human Posterior Sclera: Age- and Glaucoma-Related Changes Measured Using Inflation Testing, 
Investigative Opthalmology & Visual Science 53(4) (2012). 

[53] K.M. Myers, B. Coudrillier, B.L. Boyce, T.D. Nguyen, The inflation response of the posterior bovine 
sclera, Acta Biomaterialia 6(11) (2010) 4327-4335. 

[54] M. Dalbosco, T.A. Carniel, E.A. Fancello, G.A. Holzapfel, Multiscale numerical analyses of arterial 
tissue with embedded elements in the finite strain regime, Computer Methods in Applied Mechanics 
and Engineering 381 (2021) 113844. 

[55] B. Agoram, V.H. Barocas, Coupled macroscopic and microscopic scale modeling of fibrillar tissues 
and tissue equivalents, J Biomech Eng 123(4) (2001) 362-9. 

[56] P.L. Chandran, V.H. Barocas, Deterministic material-based averaging theory model of collagen gel 
micromechanics, J Biomech Eng 129(2) (2007) 137-47. 

[57] T. Stylianopoulos, V.H. Barocas, Volume-averaging theory for the study of the mechanics of collagen 
networks, Computer Methods in Applied Mechanics and Engineering 196(31) (2007) 2981-2990. 

[58] C. Boote, I.A. Sigal, R. Grytz, Y. Hua, T.D. Nguyen, M.J.A. Girard, Scleral structure and biomechanics, 
Progress in Retinal and Eye Research 74 (2020) 100773. 

[59] I.C. Campbell, S. Lovald, M. Garcia, B. Coudrillier, Biomechanical Properties of the Sclera, in: I. 
Pallikaris, M.K. Tsilimbaris, A.I. Dastiridou (Eds.), Ocular Rigidity, Biomechanics and Hydrodynamics of 
the Eye, Springer International Publishing, Cham, 2021, pp. 77-105. 

[60] B. Coudrillier, C. Boote, H.A. Quigley, T.D. Nguyen, Scleral anisotropy and its effects on the 
mechanical response of the optic nerve head, Biomechanics and Modeling in Mechanobiology 12(5) 
(2013) 941-963. 

[61] R.E. Norman, J.G. Flanagan, I.A. Sigal, S.M.K. Rausch, I. Tertinegg, C.R. Ethier, Finite element 
modeling of the human sclera: Influence on optic nerve head biomechanics and connections with 
glaucoma, Experimental Eye Research 93(1) (2011) 4-12. 

[62] J.M. Guccione, A.D. McCulloch, L.K. Waldman, Passive material properties of intact ventricular 
myocardium determined from a cylindrical model, J Biomech Eng 113(1) (1991) 42-55. 

                  



26 

 

[63] X. He, J. Lu, Explicit consideration of fiber recruitment in vascular constitutive formulation using beta 
functions, Journal of the Mechanics and Physics of Solids 163 (2022) 104837. 

[64] X. He, J. Lu, Modeling planar response of vascular tissues using quadratic functions of effective 
strain, Int J Numer Method Biomed Eng 39(4) (2023) e3653. 

[65] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A New Constitutive Framework for Arterial Wall Mechanics 
and a Comparative Study of Material Models, Journal of elasticity and the physical science of solids 
61(1) (2000) 1-48. 

[66] B. Coudrillier, D.M. Geraldes, N.T. Vo, R. Atwood, C. Reinhard, I.C. Campbell, Y. Raji, J. Albon, R.L. 
Abel, C.R. Ethier, Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular 
Pressure-Induced Deformation of the Porcine Lamina Cribrosa, IEEE Trans Med Imaging 35(4) (2016) 
988-99. 

[67] X. Jia, F. Zhang, M. Cao, Z. Pan, K. Liu, D. Zhou, X. Duan, Elevated IOP Alters the Material Properties 
of Sclera and Lamina Cribrosa in Monkeys, Dis Markers 2022 (2022) 5038847. 

[68] R.E. Norman, J.G. Flanagan, I.A. Sigal, S.M. Rausch, I. Tertinegg, C.R. Ethier, Finite element modeling 
of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma, 
Experimental eye research 93(1) (2011) 4-12. 

 

Statement of Significance 

Understanding the mechanics of fibrous tissues is crucial for advancing knowledge of 

various diseases. This study uses the ONH as a test case to compare conventional continuum 

models with fiber models that explicitly account for the complex fiber structure. We found that 

the fiber model captured better the biomechanical behaviors at both the tissue level and the fiber 

level. The insights gained from this study demonstrate the significant potential of fiber models to 

advance our understanding of not only glaucoma pathophysiology but also other conditions 

involving fibrous soft tissues. This can contribute to the development of therapeutic strategies 

across a wide range of applications. 
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