Deformation of the Normal Monkey Optic Nerve Head
Connective Tissue after Acute IOP Elevation within 3-D
Histomorphometric Reconstructions
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Purrose. To characterize optic nerve head (ONH) connective
tissue deformation after acute (15 or 30 minutes) intraocular
pressure (IOP) elevation in six adult normal monkeys using
three-dimensional (3-D) histomorphometry.

MEertHODS. Trephined ONH and peripapillary sclera from both
eyes of six monkeys, each perfusion fixed with one eye at IOP
10 mm Hg (IOP-10) and the other at IOP 30 or 45 mm Hg
(IOP-30 or IOP-45, by anterior chamber manometer), were
serially sectioned, 3-D reconstructed, 3-D delineated, and quan-
tified according to standard parameters. For each monkey,
intereye differences (high-IOP eye minus IOP-10) for each
parameter were calculated and compared by ANOVA and EPID-
max both overall and regionally. EPIDmax deformations for
each parameter were defined to be those statistically significant
differences that exceeded the maximum physiologic intereye
difference within six bilaterally normal monkeys in a previous
report.

Resurts. Regional EPIDmax laminar thinning, posterior bowing
of the peripapillary sclera, and thinning and expansion of the
scleral canal were present in most high-IOP eyes and were
colocalized in those demonstrating the most deformation. Lam-
inar deformation was minimal, not only posteriorly but in some
cases anteriorly in the high-IOP eyes. No increase in deforma-
tion was seen in the IOP-45 versus the IOP-30 eyes.

Concrusions. ONH connective tissue alterations after acute IOP
elevation involve regional thinning, stretching, and deformation
of the lamina cribrosa and peripapillary sclera that are minimal to
modest in magnitude. The time-dependent character of these
alterations and their compressive, expansile, and shear effects on
the axons, the astrocytes, and the laminar and posterior ciliary
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circulations remain to be determined. (Invest Ophthalmol Vis Sci.
2009;50:5785-5799) DOI:10.1167/i0vs.09-3410

he neural, vascular, and connective tissues of the optic

nerve head (ONH) make up a dynamic environment
wherein 1.2 to 2.0 million retinal ganglion cell (RGC) axons
converge, turn, and exit the eye through the neural canal
opening (NCO; see Figs. 2, 7). Within the scleral portion of the
neural canal, the bundled axons pass through the lamina cri-
brosa, a three-dimensional (3-D) meshwork of astrocyte-cov-
ered, capillary-containing connective tissue beams. Although
glaucomatous damage to the visual system most likely causes
major pathophysiologic changes within the RGC body,'~® pho-
toreceptors,”'! lateral geniculate body,'?"'% and visual cor-
tex,'* strong evidence suggests that damage to the retinal
ganglion cell axons within the lamina cribrosa of the ONH*>-2°
is the central pathophysiology underlying glaucomatous vision
loss. Recent studies in humans,>"** monkeys,'?2%-23-28
rats,>® ! and mice,>* support the importance of the ONH by
describing significant alterations within the prelaminar, lami-
nar, and peripapillary scleral tissue of the ONH at the earliest
detectable stage of experimental glaucoma. Although the in-

teraction between ONH connective tissue deforma-
tion,1-20:2426:33 ajtered astrocyte function,>* 3% and isch-
39-42

emia are beginning to be elucidated, the multifactorial
insults to the RGC axons remain to be characterized. These
insults may include intraocular pressure (I0P)-related®” and
non-IOP-related components**~#° that are not dependent on
IOP-induced connective tissue deformation, damage, and/or
remodeling.

The ONH has been characterized as a biomechanical struc-
ture in studies of the deformation of the lamina cribrosa after
acute IOP elevations in cadaveric eyes*'**%7 and in mon-
keys.'”*® Levy and Crapps?? reported a 12-um average poste-
rior (outward) movement of the central lamina with acute IOP
elevations from 10 to 25 mm Hg for short periods in cadaveric
eyes. Yan et al.?' found that increasing IOP from 5 to 50 mm
Hg for 24 hours produces an average posterior deformation of
the central lamina of 79 wm and slight contractions of the
scleral canal and thinning of the lamina that do not achieve
significance.

We have studied acute IOP-induced deformation of the
monkey ONH connective tissues by using two-dimensional
(2-D) histomorphometry within two groups of monkey
eyes.'”%® In the first study, Bellezza et al. *® demonstrated that
the laminar position was significantly more anterior (toward
Bruch’s membrane), the lamina cribrosa was thinner, and the
scleral canal diameter was larger in a group of monkey eyes
that had been perfusion fixed at IOP 10 mm Hg (IOP-10)
compared with a group of immersion fixed (IOP-0) eyes. Their
results suggest that the lamina cribrosa and scleral canal wall
act like an expandable trampoline at low levels of IOP, with the
canal expanding and the lamina thinning and becoming more
tautly stretched as IOP is elevated from O to 10 mm Hg.
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their accuracy. Levy and Crapps®* used 2-D x-ray images and FE- %
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lamina cribrosa surface. 5 © = ~ =
Although we have emphasized that IOP-related axonal ﬁ
trauma within the lamina cribrosa may be unrelated to actual i
connective tissue deformation,?>>> it remains important to c ?DE «<RadY228 0N %
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papillary scleral displacement at a given IOP. The purpose of = °
this study was to characterize connective tissue deformation of E)
the lamina, scleral canal wall, and peripapillary sclera within PR -
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All animals were treated in accordance with the ARVO Statement for % é S
the Use of Animals in Ophthalmic and Vision Research. One female and ) 2oy 8
five male normal monkeys (aged 5-14 years) were used (Table 1). o el Rl N R Rl N E "g é%
Before they were killed, IOP and axial length were measured in both ERSS % Q
eyes of each animal on three to five separate occasions. IOP was ° % %8 %
defined to be the mean of three measurements by handheld tonometer % 'g« £ g £ & = = _% Z. %
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was set to 10 mm Hg with an adjustable saline reservoir. After a O~ § g _B‘ E =
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one eye (IOP-30 and IOP-45, respectively) for 15 minutes (30 minutes - g 5 =
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eye was enucleated, all extraocular tissues were removed, and the : N 5] ‘aE 'g %
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By gross inspection, perfusion was excellent in all six IOP-10 eyes. 5‘ Sl o a o w n e
However, blood was variably present in the retinal vessels, posterior = z
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ciliary arteries, and vortex veins of the six high-IOP eyes. The posterior
scleral shell with intact ONH, choroid, and retina were placed in 5%
glutaraldehyde solution for storage.

Generation of the Aligned Serial Section Images
for Each ONH and 3-D ONH Reconstruction

These steps have been described in detail in our previous reports.
Briefly, the ONH and peripapillary sclera were trephined (6-mm diam-
eter), pierced with alignment sutures, embedded in paraffin, mounted
on a microtome, and sectioned. After each section was cut, the block
surface was stained with a 1:1 (vol/vol) mixture of Ponceau S and acid
fuchsin stains and then imaged at a resolution of 2.5 X 2.5 um per
pixel. The sections were serially cut at 3.0-um thickness, and the
staining and imaging process was repeated after each cut. Imaging
began at the vitreoretinal interface and continued ~200 um into the
retrolaminar orbital optic nerve.

Serial section images of the ONH were aligned in the anterior-to-
posterior direction and stacked at 3.0-um intervals into a 3-D recon-
struction of the ONH and peripapillary scleral connective tissue
(~1080 X 1520 X 400 voxels, each 2.5 X 2.5 X 3.0 um in size).

20,24

3-D Delineation of ONH and Peripapillary Scleral
Landmark Points

Our 3-D delineation technique has been described in detail in previous
rcports“ ~26 (see Fig. 1). Briefly, with the use of the custom software
(based on the Visualization Toolkit, Clifton Park, NY), 3-D ONH recon-
struction was loaded and the delineator designated the approximate
center of the neural canal as the center of rotation, around which 40,
7-voxel-thick, digital, radial, sagittal slices of the 3-D reconstruction
were serially served at 4.5° intervals to the delineator’s workstation
(Fig. 1A).

Within each sagittal section image, the delineator marked seven
structures—the lamina cribrosa, sclera, neural boundary, Bruch’s mem-
brane (BM), internal limiting membrane (ILM), central retinal vessels,
and subarachnoid space—and six pairs of neural canal landmark
points—the NCO which in the monkey is most often the innermost
extension of the Bruch’s membrane opening (BMO), the anterior
scleral canal opening (ASCO), the anterior laminar insertion (ALI), the
posterior laminar insertion (PLI), the posterior scleral canal opening
(PSCO), and the anterior end of the subarachnoid space (ASAS) (Fig.
1B). While marking in the sagittal section view window, the delineator
simultaneously viewed a slaved window showing the cursor’s location
within a digital transverse section image (Fig. 1C). The 3-D Cartesian
coordinates and category for each mark were saved, generating a 3-D
point cloud that represented each of the marked structures (Fig. 1D).

Three experienced delineators performed all the delineations in
this study. Both eyes of each animal were delineated by a single person.
The delineators were not masked to the IOP status of each eye;

FIGURE 1. 3-D delineation within the
colorized, stacked-section, 3-D ONH
reconstruction of a single ONH. (A)
Forty serial, digital, radial, sagittal
slices, each 7 voxels thick, were
served to the delineator at 4.5° inter-
vals. (B) A representative digital sag-
ittal slice, showing all 13 categories
of the marks, which were 3-D delin-
eated by using linked, simultaneous,
colocalization of the sagittal slice
(shown) and the transverse section
image through the delineated point
(©). (D) Representative 3-D point
cloud showing all delineated points
for a normal monkey ONH, relative
to the posterior serial section image
(vitreous, top; orbital optic nerve,
bottom).
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however, they were effectively unaware of the IOP status during
delineation, because the file name of each volume within the delinea-
tion software did not contain that information. On completion of
delineation of both eyes of each monkey, the marks were checked for
accuracy by two of the authors with extensive experience (HY, CFB)
and without knowledge of IOP status.

The inter- and intradelineator variability and reproducibility of our
delineation technique has been characterized in a series of re-
ports.?*=2° Briefly, the interdelineator variability for each parameter
was assessed by having five delineators (only two for our cupping
parameters>>) indicate all ONH landmark points within the normal and
early-glaucoma eyes of three monkeys. Intradelineator reproducibility
was assessed by having two of the five (only one for our cupping
parameters) indicate all landmarks of both eyes of one monkey on two
additional occasions at least 2 weeks apart. The inter- and intradelin-
eator variability data from the three pairs of monkeys (one eye is
normal and the contralateral eye is early-glaucoma) of our previous
reports are summarized in Table 2.

Clinical Alignment of 3-D ONH Reconstructions

For each ONH, a reconstruction of the central retinal vessels was
performed and three-dimensionally overlaid onto a predeath photo by
using the qualitative match of the ONH and retinal vessels. Once
preliminarily aligned (using the vessels only), the vessels and NCO
points were co-visualized to assess the relationship of the optic disc
margin in the photo to the delineated NCO points. A final 3-D adjust-
ment was then performed to match the NCO to the disc margin while
maintaining vessel alignment.

NCO Zero Reference Plane

For each 3-D ONH reconstruction, a least-squares ellipse was fit to the
80 NCO points (which in this case are the end of Bruch’s mem-
brane)**%° creating an NCO zero reference plane (Fig. 2C).** The
centroid of the NCO ellipse established the center point for all mea-
surements. All quantifications of offset, depth, position, and post-NCO
total prelaminar volume were made relative to this plane (Figs. 2C-G).

Quantification

This report includes overall and regional quantification of neural canal
offset and depth, lamina cribrosa position and thickness, scleral flange
thickness, peripapillary scleral position and thickness, and post-NCO
total prelaminar volume. The definitions and calculation methods of
these parameters have been described in detail in our previous re-
ports>~2¢ and are briefly summarized as follows (Fig. 2). The neural

canal landmark depth was the anterior-to-posterior distance of each
marked point to the NCO zero reference plane, and offset was the
distance (within NCO zero reference plane) of each projected mark
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NCO reference pla(;le

FIGURE 2. Parameter definitions: (A) a representative digital sagittal slice showing the ILM (pink dots), BM (orange dots), anterior
laminar/scleral surface (wbhite dots), posterior laminar/scleral surface (black dots), and neural boundary (green dots). (B) A representative
digital sagittal slice showing the neural canal architecture: NCO (the opening in the Bruch’s membrane/retinal pigment epithelial complex,
red), ASCO (dark blue), ALI (dark yellow, partly hidden behind the ASCO in dark blue), the PLI (green), and PSCO (pink).The ASAS (light
blue) was also delineated. (C) Definitions of the offset and depth using ASAS as an example. Right ASAS point was projected to NCO zero
reference plane (cyan line), the distance between NCO centroid to the projection of ASAS was defined as offset. The distance between the
ASAS to the projection was defined as the depth of ASAS. The offset and depth of all other neural canal structures were defined in the same
way. (D) Laminar position (green arrow) is defined as the shortest distance from the delineated anterior laminar surface point (white dot)
to the NCO zero reference plane. (E) Lamina cribrosa thickness at each delineated anterior surface point is determined by fitting a
continuous surface (white line) to all anterior surface points and then measuring the distance along a normal vector of the anterior surface
(green arrow) from each anterior delineated point to the posterior surface. (F) The thickness of the scleral flange at each delineated anterior
surface point (white dots) is defined as the distance between the neural canal boundary points (green line), along a vector parallel to the
PSCO normal vector (blue arrow). (I) Post-NCO total prelaminar volume (light green: a measure of the laminar or connective tissue
component of cupping) is the volume beneath the NCO zero reference plane in cyan, above the lamina cribrosa and within the neural canal

wall.

from NCO centroid. Laminar position was the shortest distance from
each delineated anterior laminar surface point to the NCO reference
plane. Laminar thickness was calculated at each delineated anterior
laminar surface point as the shortest distance to the posterior laminar
surface along a vector normal to the anterior laminar surface (fitted
into the continuous surface to generate the normal vector).

Peripapillary scleral position and thickness were calculated in the
same way as laminar position and thickness. Scleral flange thickness
was defined as the distance from the anterior scleral flange surface to
the neural canal boundary surface, measured at each delineated ante-
rior scleral flange surface point along a vector parallel to the PSCO
normal vector. Post-NCO total prelaminar volume was designed to
detect deformation of the anterior neural canal connective tissue in a
single parameter and is defined to be the total volume (tissue and
nontissue) beneath the NCO zero reference plane, above the lamina
cribrosa, and within the neural canal wall.

Overall and Regional Intereye Differences
by Monkey

Overall and regional parameter values were calculated for both eyes of
each monkey as outlined in Figure 3.

Overall and Regional Schematic Data Maps
by Monkey

Schematic depictions of overall (Fig. 4) and regional (Fig. 5) differences
were created without regard for statistical significance for each mon-
key by overlaying the overall mean measurements for each eye (Fig. 4)
or for the superior and inferior (Fig. 5, left) and nasal temporal (Fig. 5,
right) regions of each eye.

Statistical Analyses

For each ONH, 80 measurements of the following parameters were
made: offset and depth of the ASCO, ALI, PLI, PSCO, and ASAS.

Measurement of laminar position and thickness, scleral flange thick-
ness, and peripapillary scleral position and thickness were made at
each delineation point after the surfaces were fit to the anterior and
posterior laminar and scleral points. Therefore, for all nonvolumet-
ric parameters, at least # = 40 measurements were made for each
ONH, and a factorial analysis of variance (ANOVA) was performed
to assess the effect of region and IOP (IOP-10 vs. IOP-30 or IOP-10
vs. IOP-45) on each parameter between the eyes of each monkey.
Statistically significant differences between regions, IOPs, and re-
gion-by-IOP combinations required an overall significant F-test fol-
lowed by t-tests with P corrected for multiple comparisons.’® Be-
cause our volumetric parameters did not lend themselves to
multiple measures within individual eyes, a statistical assessment of
intraeye differences for post-NCO total prelaminar volume for each
monkey was not possible.

Statistically Significant and EPIDmax Differences

As just described, statistically significant differences were deter-
mined by an ANOVA. We defined EPIDmax differences to be those
statistically significant differences that exceeded the physiologic
intereye difference maximum (the maximum intereye difference;
PIDmax) within six bilaterally normal monkeys in a previous re-
port.”® Within this construct, we considered statistically significant
differences between the high- and low-IOP eyes of each monkey to
be those that exceeded the combination of the variability of our 3-D
histomorphometric quantification method and the true biological
variation of each parameter both overall and within a region. We
considered EPIDmax differences to be those statistically significant
differences that were more likely to be treatment effects (i.e., to
represent a biological response to acute pressure elevation rather
than the difference between the eyes of a normal monkey). For each
volumetric parameter, we compared the intereye difference for
each animal to the PIDmax difference for that parameter and
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FIGURE 3. Parameter regionalization
(right eye configuration). Neural ca-
nal offset (A) and depth data (B) for
each neural canal landmark were
pooled for eight anatomic regions:

superior (S), superonasal (SN), nasal

15° 15°

(N), inferonasal (IN), inferior (I), in-
ferotemporal (IT), temporal (T), and
superotemporal (ST). The S, N, I, and
T regions contained all marks within
60° sections of the ONH centered
about the S-I and N-T clinical axes,
and the SN, IN, IT, and ST regions
contained all marks in 30° radial sec-
tions of the ONH centered about the
SN-IT and IN-ST axes. Concentric
rings represent the different neural
canal landmarks from its internal en-
trance NCO to its external exit PSCO
as shown in the superior region of
(A) and (B). Neural canal depth mea-
surements started with the ASCO
rather than NCO. (C) With the center
of the NCO as the starting point, 12
radial sections perpendicular to the
NCO zero reference plane divided
the volumetric parameters into 24,
15° radial regions. Then, regional vol-
umes were projected onto the NCO
zero reference plane, color-coded by

(C) Volumetric Parameters

S

Peripapillary Sclerg

=X
D

(F) Peripapillary Scleral Thickness

region and overlaid onto a standard ellipse. (D) Within the lamina, position and thickness data were pooled into 17 regions according to the three
radial regions (central; MP, middle periphery; P, periphery) and eight quadrants, as in (A) and (B). (E) The peripapillary sclera position data were
pooled into eight regions (inner boundary starting from the ASCO ellipse [dark black line] to an ellipse that is 1.62 times the size of the ASCO
ellipse). (F) Peripapillary scleral thickness data were pooled into 16 regions; 2 radial regions (flange, covering the area from ASCO to PSCO;
peripapillary sclera region, covering the area from PSCO to 1.62 times ASCO size).

defined EPIDmax differences to be those differences that exceeded
the PIDmax only.

Difference, Change, and
Deformation Terminology

We measured postmortem intereye differences for each parameter for
each monkey. We emphasized EPIDmax intereye differences as those
statistically significant differences that most likely represent acute
IOP-induced change in the high-IOP eye of each monkey. We thus
referred to EPIDmax intereye differences as change or EPIDmax
change.

We further grouped our parameters into position-change and thick-
ness-change parameters to better recognize the colocalized behavior of
these two forms of deformation. To describe position-change we used
the following terminology as it relates to EPIDmax differences in our
measurement parameters: neural canal radial expansion was defined
to be an EPIDmax increase, neural canal radial contraction an
EPIDmax decrease in neural canal offset, lamina cribrosa anterior
deformation was defined to be an EPIDmax increase (more anterior or
inward), and lamina cribrosa posterior deformation an EPIDmax
decrease (more posterior or outward) in anterior lamina cribrosa po-
sition, relative to the NCO zero reference plane.

Peripapillary scleral posterior bowing was defined to be a poste-
rior (outward) deformation of the peripapillary sclera relative to the
more peripheral sclera, which manifests as an EPIDmax increase in the
position of the peripapillary sclera. In this scenario, because the peri-
papillary sclera carries the ONH with it as it moves outward, it assumes
a final position that is anterior to the NCO zero reference plane.
Post-NCO total prelaminar volume expansion was defined as an
EPIDmax volumetric increase and post-NCO total prelaminar volume
contraction an EPIDmax volumetric decrease in the space confined
below the NCO zero reference plane, within the neural canal wall and
above the anterior laminar surface. As such, this parameter volumetri-
cally combines the individual deformations of the neural canal wall and
lamina cribrosa relative to the NCO zero reference plane.

To describe thickness-change, we defined neural canal axial
thickening to be an EPIDmax increase, and neural canal axial thin-
ning an EPIDmax decrease in neural canal landmark depth. We de-
fined laminar and peripapillary scleral thickening and thinning as
EPIDmax increases or decreases in the thickness measurements for
each tissue.

RESULTS

Descriptive Data

Descriptive data for the six normal monkeys and the histomor-
phometric optic disc size for each eye are reported in Table 1.
Five rhesus monkeys and one cynomolgus monkey, aged from
5 to 14 years, were used. Mean IOP under ketamine/xylazine
anesthesia varied from 4 to 12 mm Hg in both eyes of all six
monkeys. Ultrasonic axial length measurements before death
ranged from 18.29 to 21.39 mm.

Histomorphometric vertical disc size (measured at NCO)
ranged from 1214 to 1641 pm, and histomorphometric hori-
zontal disc size ranged from 864 to 1143 pum. Histomorpho-
metric optic disc area ranged from 0.801 to 1.473 mm? (based
on an ellipse fitted to 80 delineated NCO points; see the
Methods section).

Overall Data for Each Parameter by Monkey

Overall IOP-10 eye data along with the statistically significant
and EPIDmax differences for the high-IOP eye of each animal
are reported in Table 2. Schematic plots of the overall data for
both eyes of each monkey are presented in Figure 4.

Within the schematic plots of Figure 4, qualitative differ-
ences between the 6 low-IOP normal eyes include laminar
surface curvature (relatively flat in monkey 5 and relatively
curved in monkeys 1 and 4); laminar and peripapillary thick-
ness (relatively thin in monkey 1 and relatively thick in monkey
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FIGURE 4. Schematic representation of the overall deformation data
for the low (solid colors)- and high (dotted lines)IOP ONHs of each
monkey as reported in Table 2. Qualitative differences between the six
normal eyes include laminar surface curvature (relatively flat monkey
5, relatively curved monkeys 1, 4); laminar and peripapillary thickness
(relatively thin monkey 1, relatively thick monkey 6); and NCO size and
obliqueness (small and less oblique monkey 0, large and more oblique
monkey 3). Intereye differences after acute IOP elevation were greatest
in monkeys 5 and 6 and include radial expansion of the scleral portion
of the neural canal posteriorly, accompanied by axial thinning of the
posterior canal, thinning of the lamina without substantial posterior
deformation, and posterior bowing of the peripapillary sclera. These
changes were minimally and variably present in the other four eyes.
There was no qualitative relationship between the geometry, magni-
tude of IOP, and degree of deformation in the high-IOP eyes.

6); and NCO size and obliqueness (small and less oblique in
monkey 6, and large and more oblique monkey 3). Overall, the
lamina cribrosa did not deform appreciably in the high-IOP
eyes of any of these monkeys compared to their contralateral
IOP-10 eye. Intereye differences after acute IOP elevation are
greatest in monkeys 5 and 6 and include expansion and thin-
ning of the posterior neural canal, accompanied by thinning of
the lamina without substantial posterior deformation of the
lamina cribrosa and posterior bowing of the peripapillary
sclera.

Within the overall data in Table 2, very few changes
achieved EPIDmax differences and therefore we emphasize
the regional rather than the overall results.

Regional Data for each Parameter by Monkey

Superimposed, averaged, central vertical, and horizontal data
for both eyes of each animal are schematically depicted in
Figure 5. Statistically significant and EPIDmax regional differ-
ences for each parameter and for each monkey are reported in
Figure 6. Although the overall deformations depicted in Figure
4 were minimal, the schematics (Fig. 5) qualitatively estab-
lished that regional alterations were more substantial. When
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the regional intereye difference data for each position and
thickness parameter were arranged by monkey (Fig. 6), three
patterns of change were apparent. Monkey 1 demonstrated
minimal regional position or thickness change. Monkeys 2, 3,
and 4 demonstrated non-colocalized regional thinning and peri-
papillary scleral bowing. Monkeys 5 and 6 demonstrated colo-
calized regional thinning and position changes. These three
patterns of early IOP-induced alterations and the fact that each
included minimal laminar position change, are the principal
findings of this report.

Minimal Detectable Change

Although the high-IOP eye of monkey 1 demonstrated overall
peripapillary scleral thickening (Table 2) and a region of colo-
calized neural canal thinning and peripapillary scleral posterior
bowing and thickening (Fig. 6), these changes were of minimal
magnitude and extent.

Non-colocalized Regional Thinning, Canal
Expansion, and Peripapillary Scleral Bowing

Monkeys 2, 3, and 4 demonstrated EPIDmax thinning of the
neural canal and lamina and non-colocalized peripapillary
scleral bowing.

Colocalized Regional Thinning and
Position Changes

Monkeys 5 and 6 demonstrated enough regional position and
thickness change that these phenomena colocalized. The phe-
nomenon of colocalization was not precise, but was best seen
in the regions of EPIDmax post-NCO total prelaminar volume
expansion, which broadly colocalized with regional neural
canal expansion and thinning as well as peripapillary scleral
bowing in each eye.

Effect of Magnitude and Duration of
IOP Elevation

There was no evidence of increased deformation in the IOP-45
(monkeys 1-3) compared to the IOP-30 (monkeys 4 -6) eyes
after 15 minutes of acute IOP elevation, either overall or re-
gionally. However, the most extensive deformation clearly
occurred within the one animal (monkey 6) in which the acute
IOP elevation to 30 mm Hg was held for 30 rather than 15
minutes.

Di1scUSSION

The purpose of this study was to three-dimensionally quantity
the laminar, neural canal wall, and peripapillary scleral com-
ponents of ONH connective tissue deformation after 15 min-
utes of acute IOP elevation in five monkeys (30 minutes in
monkey 6). The principal findings of this report are as follows.
First, in all animals, the lamina deformed minimally in the
high-IOP eye and was not only posterior but in some cases
anterior. Second, all deformations (both position and thickness
changes) were regional and specific to individual eyes. Third,
the regional deformation within the six high-IOP eyes spanned
the following spectrum: minimal detectable change in monkey
1; regional thinning accompanied by non-colocalized peripap-
illary scleral bowing in monkeys 2, 3, and 4; and colocalized
regional thickness and position changes in monkeys 5 (supe-
rior temporally and temporally) and 6 (inferior temporally and
temporally). Fourth, by far the greatest deformation occurred
in the one eye subjected to 30 minutes of elevated IOP. Fifth,
neither the magnitude of IOP elevation nor the architecture of
the ONH connective tissue appeared to relate to the magnitude
of deformation.
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Schematic representation of the vertical and horizontal regional deformation data for the low (solid colors)- and high (dotted lines)-IOP

ONHs of each monkey. Mean data from the superior and inferior (/eft) and nasal and temporal (right). Regions of both eyes of each animal are
schematically overlaid as central vertical (left) and horizontal (right) sections. The net regional canal expansion can now be seen in monkeys 2,
3, 5, and 6 (although in monkey 1, there was contraction of the superior canal). Small overall posterior bowing of the peripapillary sclera was
present in most animals. Small anterior and posterior deformations of the lamina cribrosa accompanied by laminar thinning were also present in
most high-IOP eyes. The canal, laminar, and peripapillary sclera deformations were not symmetrical to the center of the NCO in some animals
because of the true asymmetric deformation and asymmetric neural canal architecture within the two eyes of an animal. Although the recorded
intereye differences are accurate, they are a likely combination of true connective tissue deformation plus some reference-plane-induced artifacts
in the subset of high-IOP eyes, in which true connective tissue deformation led to shifts and/or tilts in the position of the reference plane relative

to the structures being measured. All data are plotted in right eye configuration.

These findings should be viewed in the following context.
First, the lack of substantial laminar deformation in these ani-
mals is compatible with our previous study'?; with that of Levy
and Crapps,>? in which the period of IOP elevation was short;
and with recent studies in which spectral domain optical
coherence tomography (SD-OCT) was used in living human
eyes (Agoumi Y, et al. JOVS 2009;49:ARVO E-Abstract 4898).
These findings are also consistent with predictions made by
computational models devised by Sigal et al.>' Using eye-spe-
cific models, they observed that an acute increase in IOP led to
peripapillary sclera bowing and lateral displacements of the
lamina (mostly in the periphery), whereas the central lamina
remained stationary or displaced slightly anteriorly, depending
on the eye. The study, however, did not address the differ-
ences in ONH architecture that led to the variations in re-
sponse to IOP.

Our deformations were less than those reported by Yan et
al.?" in which IOP was increased for 24 hours. Laminar and
scleral canal wall deformations are likely to be viscoelastic,?*>*
meaning that the tissue reaches full deformation only after a
given period, and so longer IOP elevations may induce larger
deformations. Although ex vivo studies of human eyes suggest
that an equilibration time of 15 minutes is sufficient to obtain
a stable deformation of the vitreoretinal interface,>® it is pos-

sible that the deformations in this study would have been more
substantial had the period of IOP elevation been extended to
hours or days. Based on our previous studies of connective
tissue architecture in monkey eyes'®*® and recent parameter-
ized finite element modeling of human®">*>® and monkey
(Sigal 1A, et al. IOVS 2008;49:ARVO E-Abstract 3668; Roberts
MD, et al. JOVS 2008;49:ARVO E-Abstract 3669) ONHs, we
believe that the manner in which the lamina cribrosa and/or
scleral canal deform after a given IOP elevation is determined
by the level and duration of IOP elevation and the structural
stiffness of each tissue.

The structural stiffness of a tissue is the combination of its
architecture (the quantity and distribution of load-bearing tis-
sue) and its material properties (the stiffness or compliance of
the tissue), both of which contribute to a structure’s ability to
withstand deformation under an applied load.>” The results
obtained in this work suggest that the structural stiffness of the
lamina cribrosa and peripapillary sclera interact (Fig. 7), which
is consistent with our previous report*® and predictions made
with computational models.>”>® For analysis, it is useful to
separate the IOP-induced deformation of the ONH tissues into
scleral canal expansion or contraction, laminar and scleral
canal thinning, and anterior or posterior laminar and peripap-
illary sclera deformation. Within this lamina-sclera dynamic,
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the structural stiffness of the peripapillary sclera largely gov-
erns whether the scleral canal expands after an increase in IOP.
When the structural stiffness of the sclera is relatively low, an
increase in IOP produces an expansion of the canal, pulling on
the lamina—an indirect effect of IOP on the lamina itself.
When, instead, the structural stiffness of the sclera is relatively
high, an increase in IOP produces a much more modest ex-
pansion of the canal. In this case the lamina cribrosa is not
pulled taut and is left to resist the direct force of IOP with its
structural stiffness alone, deforming posteriorly. We believe
that, in most eyes, the situation would not be at either of the
extremes described, but rather some combination of the two
cases. It should be noted that even in the setting of minimal
anterior or posterior laminar deformation, substantial tensile
strain (Jocal deformation) within the laminar beams may be
induced by the expanding scleral canal.'

Second, the fact that all deformations (both position and
thickness changes) were regional and specific to each eye is
best appreciated within the regional data of Figure 6. In saying
that the deformations were regional, we mean that the
EPIDmax deformations were focal (only one region) or re-
gional (at least two regions), or they were greatest within a
single region when diffuse (monkey 6 only). By individual-eye-
specific, we mean that the regions of greatest deformation
were not consistent within these six high-IOP eyes. We believe
our study is the first to establish that early ONH connective
tissue deformation after acute IOP elevation is regional and is
likely to be individual-eye-specific.

Third, we observed three patterns of acute ONH connective
tissue deformation within these six animals: minimal deforma-
tion; non-colocalized regional thinning and peripapillary scleral
bowing; and colocalized position and thickness changes. To
determine whether the observed deformations are portions of
a continuum of ONH connective tissue deformation necessi-
tates the development of SD-OCT#*>?%° (Agoumi Y, et al. IOVS
2009;49:ARVO E-Abstract 4898) or second-harmonic imaging®
to capture these same ONH landmarks at multiple time points
after acute IOP elevation in living human and monkey eyes.
Regardless of whether these patterns are part of a continuous
spectrum of connective tissue deformation, our data strongly
suggest that laminar and neural canal thinning, neural canal
expansion, and peripapillary sclera bowing are early responses
to acute IOP elevation in the monkey eye and that, within the
limits of our experimental techniques, these phenomena colo-
calize within those eyes demonstrating the greatest deforma-
tion.

Fourth, by far the greatest deformation occurred in the one
eye subjected to 30 minutes of elevated IOP even though
pressure was only raised to 30 mm Hg. This animal, which was
among the younger animals, but not the youngest, had the
thickest lamina and peripapillary sclera and the smallest scleral
canal (Table 2, Figs. 4, 5). It could be that the duration of IOP
exposure is an important determinant of acute ONH connec-
tive tissue deformation. Several investigators have reported
substantially increased ONH connective tissue deformations
after the prolonged application of load.?*®%°% It is possible
that the additional duration of IOP elevation and time-depen-
dent (or viscoelastic) effects alone, account for the magnitude
of deformation in monkey 6. However, without more eyes
exposed to longer IOP elevations and/or a series of individual
eyes imaged at multiple time points after acute IOP elevation,
the data from this one animal did not support such a viscoelas-
tic effect.

It is also possible that monkey 6 simply had a much more
compliant lamina and sclera than did the other animals. In our
previous histologic study of ONH connective tissue compli-
ance,'® none of the normal monkeys achieved this magnitude
of deformation, although some experienced up to 80 minutes
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of IOP elevation. This, along with the fact that this animal
appeared to have the thickest lamina and sclera and smallest
scleral canal (Table 2, Figs. 4, 5), suggests that the material
properties of both the lamina and sclera in this eye were
substantially less stiff than were the other five high-IOP eyes.
Estimates of these material properties within engineering finite
element models®*®> will be the subject of a future report.

Fifth, neither the magnitude of IOP elevation nor the tissue-
level architecture of the ONH connective tissue closely corre-
lates to the magnitude of connective tissue deformation.
Although we believe that there should be consistent biome-
chanical determinants of ONH connective tissue behavior,
these relationships are not obvious from the histomorphomet-
ric measurements in this report. Elucidating these relationships
is one of the goals of ongoing finite element modeling.>*>%¢%

Our findings are limited by the following considerations.
Although we recently improved our 3-D histomorphometric
methodologies to acquire data by using 1.5 X 1.5 X 1.5-um
voxels,*® all the reconstructions in this study were acquired
with our older 2.5 X 2.5 X 3.0-um voxel technique. Most of
the differences we report substantially exceed the resolution of
these 3-D reconstructions, and we have previously demon-
strated good reproducibility of our delineation techniques at
this resolution.?*~2° In addition, there were tissue shrinkage
effects from both fixation and embedding associated with this
technique, but comparisons between the two eyes of each
monkey should be valid, since all eyes were treated identically.

For this study, we chose acute IOP elevations of 15-minute
duration for two reasons. First, our previous ONH surface
compliance testing had suggested that most ONH surface de-
formation during 60 minutes of acute IOP elevation occurred
during the first 15 minutes of elevated IOP.°*°” Second, per-
fusion fixation is performed under deep pentobarbital anesthe-
sia, which can lower systemic blood pressure (BP). In other
animals, we had seen evidence of poor perfusion of the central
retinal vessels in eyes that were perfusion fixed after 30 to 80
minutes of high IOP. However, even in the five high-IOP eyes
of this report using our old euthanasia protocol, blood pres-
sures were low at the time of perfusion, and we saw evidence
of residual blood within the retinal and posterior ciliary circu-
lation that suggested less than ideal fixative perfusion. This
residual blood may also have been present because the fixative
perfusion pressure was not high enough (3-4 psi) to push the
fixative fluid into the small arteries of the ONH, due to the
flow-limiting nature of the old perfusion system.

Although all eyes maintained their set IOP for 60 minutes
after perfusion, it is possible that our data underestimated the
magnitude of acute IOP-induced deformation of ONH connec-
tive tissue if fixation was less than ideal. However, our most
current protocol, which ensures a fixative perfusion pressure
of 80 mm Hg as measured by direct real-time pressure moni-
toring via brachial artery cannulation, was used in the eutha-
nasia of monkey 1. We did not see larger connective tissue
deformations in this monkey, which suggests that the small
deformations we report for the other monkeys are not artifac-
tual.

Our study may also underestimate the laminar component
of ONH connective tissue deformation after acute IOP eleva-
tion if cerebrospinal fluid (CSF) pressure became elevated
during the period of perfusion, and retrolaminar tissue pres-
sure was inadvertently elevated as a result.*® We did not mon-
itor the CSF pressure in these experiments; however, we think
that this phenomenon is unlikely for the following reasons.
First, as outlined earlier, BP during perfusion was probably low
in the first five eyes and was not greater than 80 mm Hg in the
sixth. Although the relationship between BP change and CSF
pressure change in an animal that is undergoing fixation with
glutaraldehyde has not been characterized, the fact that BP was
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FIGURE 7. A peripapillary scleral-lamina cribrosa dynamic underlies
ONH biomechanics.”® We propose that there are peripapillary scleral
and lamina cribrosa contributions to ONH connective tissue behavior
and that the manner in which the scleral canal and lamina cribrosa
deform after a given level of IOP elevation in a given ONH will be
determined by its level and duration and the structural stiffness of each
tissue. Top: normal lamina cribrosa (light blue), peripapillary sclera
(slanted lines), Bruch’s membrane (solid pink line), NCO (red circles:
in this schematic diagram, Bruch’s membrane extends into the canal
and is thus considered the NCO); anterior scleral opening (blue cir-
cles); NCO zero reference plane (dotted red line); border tissue of
Elschnig (light green); choroid (black circles); and the scleral portion
of the neural canal (orange). The structural stiffness of a tissue is
defined as the combined function of both its connective tissue archi-
tecture (the quantity and distribution of load-bearing tissue) and ma-
terial properties (the stiffness or compliance of the tissue). Bottom:
changes after acute IOP elevation in the monkey eye, as depicted in
this diagram, can include: (1) posterior bowing of the ONH and
circumpapillary sclera relative to the more peripheral peripapillary
sclera (which manifest as an anterior deformation of the peripapillary
sclera relative to the NCO zero reference plane); (2) axial thinning
(orange lines are smaller in the high-IOP eye) and radial expansion of
the posterior scleral portion of the neural canal; (3) laminar thinning
(solid blue at high 1OP is less than low IOP); and (4) small anterior or
posterior deformations of the anterior lamina cribrosa surface (black
arrows and dotted blue lines). The effects of these deformations on
astrocyte physiology, posterior ciliary artery blood flow, and retinal
ganglion cell axon axoplasmic transport and flow remain to be
determined.

low in most eyes suggests that CSF pressure was also low.
Second, we qualitatively compared the size of the anteriormost
portion of the subarachnoid space within the 3-D histomor-
phometric reconstructions of the other five monkeys (perfu-
sion fixed at low BP) to monkey 1 and found no obvious
difference. This suggested that the volume of the CSF space
was not altered by the higher perfusion BP in monkey 1.
Finally, even if CSF pressure slowly climbed during the period
of perfusion fixation, this process would have occurred at the
same time that the connective tissues were being fixed into a
position determined by the previous 15 minutes of IOP eleva-
tion. We doubt that a slow CSF increase would alter the effects
of glutaraldehyde being delivered to the tissues via the blood
vessels.

However, a qualitative inspection of the subarachnoid space in
all our perfusion- and immersionfixed tissues'?2-24-26:28 gyo.
gests that the subarachnoid space is expanded in the perfu-
sion-fixed eyes. Although the collapsed (immersion-fixed)
versus expanded (perfusion-fixed) subarachnoid space may
only represent the effects of physiologic CSF pressure (in
the perfusion-fixed eyes), elevated CSF pressure in the ani-
mals in this study affecting the laminar (but not the scleral)
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deformations remains a possibility and may necessitate fur-
ther investigation.

It is possible that trephining a 6-mm-diameter piece of the
ONH and peripapillary sclera allowed residual stresses within
the sclera to be relieved. The resultant postfixation tissue
warping, if present, could induce non-IOP-related alterations
in tissue position that would confound our measurements.
However, these effects would most likely occur in the periph-
eral sclera closest to the trephine edge and therefore are
unlikely to affect the measurements within the ONH and peri-
papillary sclera. In addition, we believe that a large degree of
tissue warping in the setting of months of glutaraldehyde
fixation is unlikely.

All our measurements were made relative to a plane based
on the delineated NCO points (which are the end of Bruch’s
membrane in most monkeys).?* Any collapse of the border
tissue of Elschnig or compression of the choroid either from
the period of high IOP or from posttrephination tissue warp-
ing, could have altered these points, leading to a posterior shift
or tilt of the reference plane in the high-IOP eye, which would
have induced anterior movement or tilting of the other struc-
tures relative to its contralateral normal. In the case of refer-
ence plane tilt, the effect would be greatest in the periphery
and least near the point of inflection. In the case of a posterior
shift, the effect would be similar in both central and peripheral
measurements.

We believe that the measurements we report for both eyes
of each animal are accurate based on the previously reported
reproducibility of our delineation method and the voxel dimen-
sions within our reconstructions.*™2® We do not believe that
important shifts in the reference plane occurred as a result of
focal alterations in the border tissue of Elschnig architecture or
choroidal compression within the high-IOP eyes for the follow-
ing reasons. First, overall thinning of the ASCO and ALI
achieved statistical (but not EPIDmax) significance in monkey
3 only. Regional EPIDmax thinning of the anterior neural canal
was present only in monkey 3 and 6. A small tilting effect was
also seen within the regional cross-section schematics for mon-
keys 3 and 6 (Fig. 5), wherein the high-TOP ONH seemed to be
slightly rotated relative to the low-IOP ONH.

The lack of substantial anterior scleral canal thinning in all
six animals is important because it suggests that little posterior
deformation of NCO relative to the ONH and peripapillary
scleral landmarks that we studied (as might happen if the
choroid was compressed, or the border tissue of Elschnig was
deformed by the acute IOP elevations) is present in any of the
six high-IOP eyes. The fact that the regional EPIDmax poste-
rior canal thinning detected in monkeys 1, 2, 5, and 6 greatly
exceed the anterior canal thinning within their same regions
(significant or otherwise) strongly suggests that the detected
posterior canal thinning in these animals was not a measure-
ment artifact.

Second, we closely examined the 0°, 30°, 60°, 90°, 120°,
and 150° digital section images from both eyes of each animal
and found no qualitative evidence of choroidal compression in
the high-IOP eyes. In fact, in all monkeys the choroid was
substantially expanded, even in the face of the elevated IOP in
the high-IOP eye.

Our study included five rhesus and one cynomolgus mon-
key, which may confound our results. Although there may be
species differences in normal monkey ONH connective tissue
architecture and material properties that could influence their
response to acute IOP elevation,'?>°® we doubt that these are
important in our study for the following reasons. First, by
qualitative comparison the normal eye measurements of mon-
key 4 (cynomolgus) fell within the range determined by the
five rhesus animals for each parameter, except for NCO offset
and laminar position, where they were only minimally out of
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that range (Table 2). Second, the overall behavior in the high-
IOP eye of this animal was also within, rather than at one
extreme of, the five rhesus animals (Figs. 4, 6).

We did not perform a formal assessment of reproducibility
on the eyes in this study, and the slight differences we report
may be within the variability of our measurements. However,
we think this explanation is unlikely for most parameters for
the following reasons: First, the intra- and interdelineator re-
producibility of our parameters (Table 2) has been extensively
characterized in a series of previous reports.>* 2 Second,
close inspection of these data suggest that the range of intrade-
lineator variability for most parameters is less than the PIDmax
for each parameter®® that was used as the criterion for
EPIDmax change. Thus, we believe that for most parameters,
our EPIDmax difference, when present, represented change
beyond the variability due to delineation, had it been directly
assessed in these eyes.

Finally, we chose to order our monkeys from 1 to 6 based
on the regional change in the parameter post-NCO total prel-
aminar volume (Table 2 and Fig. 6) and the degree to which
this change colocalized with EPIDmax changes in other pa-
rameters. When we used these criteria, monkeys 5 and 6
demonstrated the greatest amount of colocalized deformation.
At present, there is no precise way to order the monkeys’
deformation, and this choice may be arbitrary, as by other
overall and regional measures other monkeys may have ex-
ceeded monkey 5. Our choice of this parameter reflects our
underlying belief that there is a progression in the individual
forms of deformation within these tissues that leads to their
colocalization. At present, this is a hypothesis that should be
studied in living eyes by using in vivo measures of ONH
connective tissue deformation, as mentioned earlier.

Our results have the following implications. First, although
the lamina demonstrated little anterior or posterior deforma-
tion, it did demonstrate regional thinning, in some cases colo-
calized with the greatest magnitude of canal expansion (mon-
key 6, Fig. 6). This point is important, because it emphasizes
the difference between overall deformation of a biological
structure (the lamina cribrosa) and local deformation (strain)
within its component elements. Expansion of the scleral canal
and the associated laminar thinning should result in expan-
sion of the laminar pores and thinning and elongation of
laminar beams. The effects on the contained laminar capil-
laries, astrocytes, and adjacent axons, as well as the transfer
of nutrients between them, may be substantial. The thinning
of the lamina cribrosa also increases the steepness of the
translaminar pressure gradient [(IOP — retrolaminar tissue
pressure)/laminar thickness] which may have separate im-
plications for astrocyte physiology and retinal ganglion cell
axoplasmic transport and flow.">1%-6%:70-75 Characterization
of alterations in laminar beam microarchitecture®”:®>
(Grimm J, et al. IOVS 2007;48:ARVO E-Abstract 3295) in
these eyes, and the stresses and strains contained therein’®
(Kodiyalam S, et al. IOVS 2005;46:ARVO E-Abstract 1267),
will also be the subject of future reports.

Second, although peripapillary scleral bowing and scleral
canal expansion are likely to be important determinants of
lamina cribrosa biomechanical behavior, their direct and indi-
rect effects on axonal susceptibility within the ONH remain
unclear. At a given perfusion pressure, bowing and thinning of
the peripapillary sclera and laminar beams should influence
blood flow within the contained laminar capillaries and poste-
rior ciliary arteries, but these effects have yet to be determined.

Finally, our EPIDmax criteria for detecting postmortem
change may be conservative. Within the regional data, in many
instances, statistically significant differences did not achieve
EPIDmax criteria and were not considered change. We believe
the trends that are present in our data are important indicators
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of early viscoelastic deformation. This prediction is currently
under study with in vivo SD-OCT imaging of the neural canal,
lamina cribrosa, and peripapillary sclera after 30, 60, 90, and
120 minutes of IOP elevation in very young and very old
monkey eyes (Burgoyne CF, et al. IOVS 2008;49:ARVO
E-Abstract 3655).
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